Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2001: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2000: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1999: ¥700,000 (Direct Cost: ¥700,000)
|
Research Abstract |
偏極K3曲面は一意的にRicci-flat Kahler計量を持つことが知られている.超ひも理論におけるミラー対称性の観点からK3曲面のRicci-flat Kahler計量の極限についての基礎的研究は重要であるが,解析的困難ゆえ,研究の進展は早くはない.私はこの萌芽的研究において偏極K3曲面の退化に伴ってRicci-flat Kahler計量がのように振る舞うかを研究した.K3曲面がRicci-flat Kahler計量を持ちながら他の複素曲面に壊れていくから,Ricci-flat Kahler計量は,極限に現れる非コンパクト曲面(対数的K3曲面)と,それ(ら)を結合させてK3曲面を再構成するインスタントンに分裂して担われると予想される.私が本萌芽研究で示したことは,対数的K3曲面に入る完備Ricci-flat Kahler計量を,無限遠方から飛び出すTaub-NUT型インスタントンによって補正することによって,崩壊寸前のK3曲面のRicci-flat Kahler計量が再現できるということである.この解析において本質的なのは,対数的K3曲面の完備Ricci-flat Kahler計量およびTaub-NUT型完備Ricci-flat Kahler計量の境界挙動と等周不等式の奇跡的な関係である.この関係をモンジュアンペール方程式の解析の観点から見ることにより,崩壊の後に個々の対数的K3曲面に分裂して担われるRicci-flat Kahler計量たちをTaub-NUTインスタントンを使ってうまく連結することにより構成される背景計量が真のRicci-flat Kahler計量の微少変形になっていることを観察することができる.
|