• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebraic Geometry, Differential Geometry and Topology of Manifolds

Research Project

Project/Area Number 12440017
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

KONO Akira  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00093237)

Co-Investigator(Kenkyū-buntansha) KOKUBU Hiroshi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (50202057)
NAKAJIMA Hiraku  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00201666)
FUKAYA Kenji  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30165261)
HAMANAKA Hiroaki  Hyogo Univ. of Education, Faculty on Teacher Education Lecturer, 学校教育学部, 講師 (20294267)
MOROWAKI Atsushi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70191062)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥14,900,000 (Direct Cost: ¥14,900,000)
Fiscal Year 2002: ¥5,600,000 (Direct Cost: ¥5,600,000)
Fiscal Year 2001: ¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 2000: ¥5,300,000 (Direct Cost: ¥5,300,000)
Keywordsgauge group / infinite dimensional Lie group / localization / homotopyset / homotopy associative / Cherm number / homotopical algebra / 無次元リー群 / 分類空間 / ホモトピー型 / 随伴作用 / スタック / 非可換代数幾何学
Research Abstract

1. Homotopy theory of infinite dimensional Lie groups (gauge groups etc)
A. Kono and S. Tsukuda partially solved the classification problem of the adjoint bundles of the principal bundles over finite complexes using the fibrewise homotopy theory. They determined the condition for the triviality of the adojoint bundle after the fibrewize localization. Note that gauge groups are the space of sections of the adojoint bundles.
2. Unstable K-theory
A. Kono and H. Hamanaka determined the group of homotopy classes of maps from a 2n dimensional finite complex to U(n). On the other hand A. Kono and H. Oshima(Ibaraki Univ.) classified compact Lie groups whose self homotopy classes are commutative groups.
3. Homotopical algebra
Homotopical algebra is non -commutative homological algebra. A. Kono and A. Moriwaki considered application of homotopical algebra to alebraic geometry or arithmetic geometry. Applications to mathematical physics and string theory are considered by K. Fukaya.
4. Dynamical system
Algebraic invariants for 2-dimensional projective Anosov dynamical system are defined and several elementary properties of them are obtained by M. Asaoka(Kyoto Univ).

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] A.Kono: "Characterization of the mod 3 cohomology of E7"Proc.AMS. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A.Kono: "On the cohomology of E8"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A.Kono: "Commutativity of the group of self homotopy classes of Lie groups"Bull.London Math.Soc.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A.Kono: "On [X, U(n)] when dim X is 2n"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A.Kono: "Topological characterrization of extensor product of BU"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Fukaya: "Mirror symmetry of abelian varieties and multi-theta functions"J.Algebraic Geom.. 11. 393-512 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 河野 明: "一般コホモロジー"岩波書店. 240 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "Characterization of the mod 3 cohomology of E7"Proc. AMS. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "On the cohomology of E8"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "Commutativity of the group of self homotolpy classes of Lie groups"Bull. London Math. Soc.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "On [X, U(n)] when dim X is 2n"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "Topological characterrization of extensor product of BU"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Fukaya: "Mirror symmetry of abelian varieties and multi-theta functions"J. Algebraic Geom.. 11. 393-512 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A. Kono: "General Cohomology"Iwanami Shoten. 240 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] A.Kono: "Characterization of the mod 3 cohomology of E7"Proc. AMS. (掲載予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono: "On the cohomology of E8"J. Math. Kyoto Univ.. (掲載予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono: "Commutativity of the group of self homotopy classes of Lie groups"Bull. London Math. Soc.. (掲載予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono: "On [X, U(n)] when dim X is 2n"J. Math. Kyoto Univ.. (掲載予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono: "Topological characterrization of extensor product of BU"J. Math. Kyoto Univ.. (掲載予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Fukaya: "Mirror symmetry of abelian varieties and multi-theta functions"J. Algebraic Geom.. 11. 393-512 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 河野 明: "一般コホモロジー"岩波書店. 240 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono: "On the cohomology of E^∧8"J.Math Kyoto Univ.. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] A.Kono: "Topological characterization of extensor product of BU"J. Math Kyoto Univ.. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] A.Moriwaki: "The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field"J.Reine Angew.Math.. 530. 33-54 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] A.Moriwaki: "A generalization of conjectures of Bogomolov and Lang over finitely generated fields"Duke Math.J.. 107・1. 85-102 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Kokubu: "New aspects in the unfolding of the nilpotent singularity of codimension three"Dyn.Syst.. 16・1. 63-95 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Tsukuda: "Comparing the homotopy types of the components of Map(S^∧4, BSU(2))"J.Pure Appl.Algebra. 161・1. 235-243 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Akira KONO: "4 manifold X over BSU (2) and corrsponding homotopy types Map (x,BSU (2))"J.Pune and App Ageha. 151. 227-237 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroaki Hamonaka: "Homotopy comminlativily in spincs groups"J.Math.Kyote Univ.. 40. 389-405 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki: "Arithemetic hight functions over generataed fields"Invi Math.. 140. 101-142 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroshi Kokubu: "Chaotic dynamics in Z_2 equivariant unfoldings of codimension three singularities of vector fields in R^3"Ergochic thery and Dynamical segter. 20. 85-107 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiraku Nakajima : "Mckay correspondence and Hilbert schemes on dwrien them"Topology. 39. 1151-1191 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi