• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on products formulae for special values of Abehan functions

Research Project

Project/Area Number 12640004
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionIwate University

Principal Investigator

ONISHI Yoshihiro  Iwate University, Faculty of Humanities and Social Sciences, Assistant Professor, 人文社会科学部, 助教授 (60250643)

Co-Investigator(Kenkyū-buntansha) ODAI Yoshitaka  Iwate University, Faculty of Humanities and Social Sciences, Assistant Professor, 人文社会科学部, 助教授 (10204215)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2002: ¥300,000 (Direct Cost: ¥300,000)
Fiscal Year 2001: ¥300,000 (Direct Cost: ¥300,000)
Fiscal Year 2000: ¥300,000 (Direct Cost: ¥300,000)
KeywordsAbelian function / Algebraic function / Algebraic curve / hyperelliptic curve / division polynomial / Frobenius-Stickelberger / Kiepert formula / Bernoulli numbers / hyperelliptic curve / アーベル(Abel)函数 / 虚数乗法論 / Hurwitz数 / multiplication formula / Complex multiplication / 行列式表示 / アーベル函数 / Abelian function
Research Abstract

At the beginning of this reseach, I aimed to investigate on just the numerator of a quite natutal and unique analogy of the usual n-multiplication formula in elliptic function theory. This analogy is entirely different from the classical Abelian function theory. Our new n-multiplication formula is also a rational function of one function with contrary to the classical theory in which such formulae are essentailly of several variables.
However, in the second research year, I found a remarkable determinantal expression of the denominator. The second research year is also devoted to investigation for this new expression. The result for the case of genus two was published in Glasgow Math. J.(2002), and one for the case of genus three will be publish in Tokyo J.Math. The result for the general genus case which was also submitted is available from a web page and many researchers are downloading it. Moreover I was invited from Edingburgh Math Soc., and discussed with several forign researchers.
In the late of the third resaerch year, I made a number theoretical study for the functions appearing in the determinant expression above. Namely, about the Laurent coefficients of the developments at the origin of the functions. The coefficients resemble strongly to the Bernoulli numbers(the coefficients of the function 1/tan(u)), and the Hurwitz numbers, (the coefficients of an elliptic function p(u) of cyclotomic type). Indeed, they satisfy von Staudt-Clausen type theorem and Kummer type congruence relation. Such the properties were proved completely and the paper is now on the Web.
This grant-aid is used mainly for the travels of the head and sub-investigators, with aimed at finding bibliographies and to present the results in several institutions.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] Yoshihiro Onishi: "Determinant expressions for Abelian functions in genus two"Glasgow Mathematical Journal. 44-3. 353-364 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshihiro Onishi: "Determinantal expressions for hyperelliptic functions in genus three"Tokyo Journal of Mathematics. 未定.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大西 良博: "楕円曲線の等分多項式の超楕円曲線に対する一般化とその行列式表示"中央大学理工学部 研究開発機構主催研究集会「暗号とそれを支える代数曲線理論」第2回報告集. 報告集. 121-140 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 尾台喜孝, 河本史紀: "総実代数体の不分岐アーベル拡大のnormal integral basis"第6回津田塾大学整数論シンポジウム報告集. 報告集. 69-74 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Odai, Hiroshi Suzuki: "The rank of the group of relative units of a Galois extension"Tohoku Mathematical Journal. 53. 37-54 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] F.Kawamoto, Y.Odai: "Normal integral basis of ∞-ramified Abelian extensions of totally real number fields"Abhandlungen aus dem Mathematishen Seminar der Universitat Hamburg. 72. 217-233 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Onishi: "Determinant expressions for Abelian functions in genus two"Glasgow Math.J.. 44. 353-364 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Onishi: "Determinant expressions for hyperelliptic functions in genus three"Tokyo J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Onishi: "Determinant expressions for hyperelliptic functions, with an Appendix by Shigeki Matsutani : Connection of The formula of Cantor and of Brioschi-Kiepert type."http://jinsha2.hss.iwate-u.ac.jp/~onishi/publications.htm.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Onishi: "Theory of generalized Bernoulli-Hurwitz numbers for algebraic functions of cyclotomic type and universal Bernoulli numbers"http://jinsha2.hss.iwate-u.ac.jp/~onishi/publications.htm.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Onishi: "Theory of generalized Bernoulli-Hurwitz numbers in the algebraic functions of cyclotomic type"http://arxiv.org/abs/math.NT/0304377.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Odai, Hiroshi Suzuki: "The rank of the group of relative units of a Galois extension"Tohoku Math.J.. 53. 37-54 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Odai, F.Kawamoto: "Normal integral bases of ∞-ramified abelian extensions of totally real number fields"Abh.Math.Sem.Univ.Hamburg. 72. 217-133 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshihiro Onishi: "Determinant expressions for Abelian functions in genus two"Glasgow Mathematical Journal. 44-3. 353-364 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshihiro Onishi: "Determinant expressions for hyperelliptic functions in genus three"Tokyo Journal of Mathematics. (未定).

    • Related Report
      2002 Annual Research Report
  • [Publications] 大西良博: "楕円曲線の等分多項式の超楕円曲線に対する一般化とその行列式表示"中央大学理工学部 研究開発機構主催研究集会「暗号とそれを支える代数曲線理論」第2回報告集. 報告集. 121-140 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 尾台喜孝, 河本史紀: "総実代数体の不分岐アーベル拡大のnormal integral basis"第6回津田塾大学整数論シンポジウム報告集. 69-74 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshitaka Odai, Hiroshi Suzuki: "The rank of the group of relative units of a Galois extension"Tohoku Mathematical Journal. 53巻. 37-54 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Fuminori Kawamoto, Yoshitaka Odai: "Normal integral bases of ∞-ramified Abelian extensions of totally real number fields"Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg. 72巻. 217-233 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshihiro Onishi: "Determinant Expressions for Abelian Functions in Genus two"Glasgow Mathematical Journal. 9月号(未定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 大西 良博: "楕円曲線の等分多項式の超楕円曲線に対する一般化とその行列式表示"中央大学理学部研究開発機構 主催 研究集会 「暗号とそれを支える代数曲線論」第2回,報告集. (未定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 尾台喜孝, 河本史紀: "総実代数体の不分岐アーベル拡大のnormal integral basis"第六回津田塾大学整数論シンポジウム報告集. 69-74 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Oda, H.Suzuki: "The rank of the group of relative units of a Galois extension"Tohoku Mathematical Journal. 53巻. 37-54 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2019-10-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi