• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Schwarz maps of hypergeometric differential equations with finite monodromy groups

Research Project

Project/Area Number 12640031
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of the Ryukyus

Principal Investigator

KATO Mituso  University of the Ryukyus, College of Education, Proffesor, 教育学部, 教授 (50045043)

Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2001: ¥500,000 (Direct Cost: ¥500,000)
Keywordshypergeometric function / monodromy group / Schwarz map / monodreomy group
Research Abstract

Appell's hypergeometric function F_2(a; b, b'; c, c'; x, y) =Σ^^∞__<m,n=0>((a,m+n)(b,m)(b',n))/((c,m)(c',n)(1,m)(1,n))x^my^n, where(a,n) = Γ(a+n)/Γ(a), satisfies a system E_2(a;b,b';c,c') of differential equations on the (x,y)-space X (【similar or equal】P^2).
1. I tabulated all the systems of parameters (a;b,b';c,c') into six classes such that each E_2(a;b,b';c,c') has a finite irreducible monodromy group. These monodromy groups have reflection subgroups whose Shephard-Todd numbers are 2,28,30 and 32.
2. The system E: = E_2(-1/<12>;1/6;1/<12>;1/3;1/2) has the biggest finite irreducible monodromy group G of order 12・25920. A Schwarz map s_E of E defined by the ratio of four linearly independent solutions of E is a 25920-valued map of X-Sing(E) into P^3, where Sing(E) denotes the singular locus of E. The closure S of the image of s_E turns out to be an irreducible hypersurface of degree 90 on which G acts.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] M.Kato: "A simple Pfaffian form representing the hypergeometric differential equation of type (3,6)"Kyushu J. of Math.. 54. 219-224 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Kato: "Appell's hypergeometric systems F_2 with finite irreducible monodromy groups"Kyushu J. of Math.. 54. 279-305 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Kato: "A simple Pfaffian form representing the hypergeometric differential equation of type (3,6)"Kyushu J. of Math. Vol.54. 219-224 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Kato: "Appell's hypergeometric systems F_2 with finite.irreducible monodromy groups"Kyushu J. of Math. Vol.54. 279-305 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Kato: "A simple Pfaffian form representing the hypergeometric differential equation of type (3,6)"Kyushu J.of Math.. 54. 219-224 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kato: "Appell's hypergeometric systems F_2 with fiuite irreducible monodromy groups"Kyushu J.of Math.. 54. 279-305 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi