• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classical and quantum theory of finite-dimensional integrable systems

Research Project

Project/Area Number 12640169
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

TAKASAKI Kanehisa  Kyoto Univ., Integrated Human Studies, Ass. Professor, 総合人間学部, 助教授 (40171433)

Co-Investigator(Kenkyū-buntansha) MATSUKI Toshihiko  Kyoto Univ., Integrated Human Studies, Ass. Professor, 総合人間学部, 助教授 (20157283)
KATO Shinichi  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (90114438)
UEDA Tetsuo  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (10127053)
UEKI Naomasa  Kyoto Univ., Graduate School of Human and Environmental Studies, Ass. Professor, 大学院・人間・環境研究科, 助教授 (80211069)
ASANO Kiyoshi  Kyoto Univ., Graduate School of Human and Environmental Studies, Professor, 大学院・人間・環境研究科, 教授 (90026774)
宇敷 重広  京都大学, 大学院・人間・環境学研究科, 教授 (10093197)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,900,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2000: ¥2,400,000 (Direct Cost: ¥2,400,000)
Keywordsintegrable system / isomonodromy / Painleve equation / spectral curve / separation of variables / Hamiltonian structure / quantum solvability / moduli space / 変数分離 / K3曲面 / 有理楕円曲面 / Calogero系 / Ruijsenaars系
Research Abstract

1. The dressing chains are known to be an important nonlinear differential equation that includes the Painleve equations. These equations have a Lax representation by a second order square matrix, and the associated spectral curve becomes hyperelliptic. This enabled us to apply the technique of separation of variables, and to obtain a Hamiltonian representation of the dressing chains under a periodic boundary condition.
2. A non-autonomous version of the SU(2) Calogero-Gaudin system was taken up an example of isomonodromic deformations on a torus. We applied the technique of separation of variables to rewrite this system into a Hamiltonian form. As a byproduct, we could find a connection of this matrix system with a scalar isomonodromic system.
3. The Inozemtsev system is a deformation of the Calogero-Moser system retaining the classical integrability. We considered its quantum theory, and discovered that the quantum system has partial solvability (quasi-exact-solvability) at a discrete series of special values of one of the coupling constants.
4. The moduli space of a class of rational functions is known to carry the structure of an integrable system. We constructed a new integrable system by replacing the rational functions by trigonometric or elliptic functions, and pointed out that these integrable systems provide very simple models of separation of variables.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] 高崎金久: "Spectral curve and Hamiltonian structure of isomonodromic SU(2) Calogero-Gaudin system"(未定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Quantum Inozemtsev model, quasi-exact solvability and N-fold super symmetry"J. Phys.. 34. 9533-9554 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Hyperelliptic Intergrable Systems on K3 and Rational Surfaces"Phys. Lett.. 283. 201-208 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Anti-Self-dual Yang-Mills equations on noncommutative space time"J. Geom. Phys.. 37. 291-306 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Painleve-Galogero Correspondence Revisited"J. Math. Phys.. 42. 1443-1473 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Torodial Lie algebras and Bogoyavlensky's 2+1-dimensional equation"Int. Math. Res. Notices. 7. 329-369 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Spectral curve and Hamiltonian structure of isomonodromic SU(2) Calogero-Gaudin system"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry"J. Phys.. Vol. 34. 9533-9554 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Hyperelliptic Integrable Systems on K3 and Rational Surfaces"Phys. Lett.. Vol. 283. 201-208 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Anti-self-dual Yang-Mills equations on noncommutative spacetime"J. Geom. Phys.. Vol. 37. 291-306 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Painleve-Calogero Correspondence Revisited"J. Math. Phys.. Vol. 42, No. 3. 1443-1473 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanehisa Takasaki: "Toroidal Lie algebras and Bogoyavlensky's 2+1-dimensional equation"Int. Math. Res. Notices. Vol. 7. 329-369 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 高崎金久: "Spectral curve and Hamiltonian structure of isomonodromic SU(2) Calogero-Gaudin System"(未定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Quantum Inozemtsev model, quasi-exact Solvability and N-fold supersymmetry"J. Phys. A. 34巻. 9533-9554 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Hyper elliptic Integrable Systems on K3 and Rational Surfaces"Phys. Lett. A. 283巻. 201-208 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Anti-self-dual Yang-Mills equations on noncom mutative space time"J. Geom. Phys.. 37巻. 291-306 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Painlevo-Calogero Correspondence Revisited"J. Math. Phys.. 42巻3号. 1443-1473 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Toroidal Lie algebras and Bogoyavlensky's 2+1-dimensional equation"Int. Math. Res. Notices. 7巻. 329-369 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 高崎金久: "Painleve-Calogero correspondence revisited"J.Math.Phys.. (未定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 上木直昌: "Applications of the theory of the metaplectic representation to quadratic Hamiltonians on the two-dimensional Eaclideanspace."J.Math.Soc.Japan. 52巻2号. 269-292 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 上田哲生: "Holomorphic dynamics"Cambridge Studies in Advanced Mathematics. (未定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 宇敷重広: "Fredholm determinant of complex Ruelleoperator, Ruelle's dynamical zeta-functioan, and forward/backward Collet-Eck mann condition"RIMS KoKyuroKu. 1153号. 85-104 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 加藤信一: "Whittaker-Shintani functions for orthogonal groups"未定. (未定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 上木直昌: "Simple examples of Lifschitz tails in Gaussian random magnetic fields"Ann.H.Poincare. 1巻3号. 473-498 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi