Project/Area Number |
12640223
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Meiji University |
Principal Investigator |
MASUDA Kyuya Meiji University, Dept. of Science and Technology, Professor, 理工学部, 教授 (10090523)
|
Co-Investigator(Kenkyū-buntansha) |
KATSURADA Masashi Meiji Univ., Dept. of Math., Assoc. Prof., 理工学部, 助教授 (80224484)
KONNO Reiji Meiji Univ., Dept. of Math., Prof.(Lecturar 2002), 理工学部, 非常勤講師 (20061921)
MORIMOTO Hiroko Meiji Univ., Dept. of Math., Prof., 理工学部, 教授 (50061974)
ISHIMURA Naoyuki Hitotsubashi Univ., Dept. of Econ., Assoc. Prof., 経済学部, 教授 (80212934)
TANI Atsushi Keio Univ. Dept. of Math., Prof., 理工学部, 教授 (90118969)
|
Project Period (FY) |
2000 – 2002
|
Project Status |
Completed (Fiscal Year 2002)
|
Budget Amount *help |
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | Navier Stokes equations / Schroedinger operators / Minimal surfaces / Kuramoto-Syvashinsky equations / Stefan problem / general slip boundary condition / curvature equation / infinite channel / オイラー方程式 / 解析性 / ナヴィエ・ストークス方程式 / 磁気流体 / 反応・拡散系 |
Research Abstract |
Masuda succeeded in classifying completely the minimal surfaces of constant Gaussian curvature in two-dimensional complex form Morimoto showed the existence of solutions of two dimensional stationary Navier Stokes equations with general outlet boundary condition for some symmetric domain of channel type. Konno showed the non-existence of positive eigen-value for Schroedinger operator in the square integrable function space on unbounded domain. Ishimura and Nakamura found some important properties for the Kuramoto-Shivashinsky equations. Tani showed the existence of solutions of Navier-Stokes equations under the general slip boundary conditions.
|