Project/Area Number |
12J04338
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Algebra
|
Research Institution | Tohoku University |
Principal Investigator |
太田 和惟 東北大学, 理学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2014: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2013: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2012: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 楕円曲線 / ゼータ関数 / Mazur-Tate 元 / BSD予想 / p進L関数 / p進表現 / p進高さ関数 / 形式群 / オイラー系 / アーベル多様体 |
Outline of Annual Research Achievements |
楕円曲線に対するp進BSD予想のような、p進ガロワ表現に付随するp進ゼータ関数とその表現の数論的不変量を結びつける予想は整数論の重要な課題である。p進高さ関数はp進ゼータ関数の特殊値と結びつくと予想されている重要な不変量である。 Mazur-Tateは, p進BSD予想の精密化と見なせる Refined BSD 予想を定式化した。この予想では、モジュラーシンボルから構成されるMazur-tate元という特殊な元がゼータ関数の役割を演じ、高さなどの数論的不変量と結びつくことが予想されている。 今年度は前年度と同様に、この Refined BSD予想の内、弱消滅予想という予想に取り組んだ。これは、楕円曲線のゼータ関数の位数とMordell-Weil 群の階数の一致を主張する弱BSD予想の類似に当たる。 前年度までは、Heegner 点からなるオイラー系に対するDarmon の微分の議論を加藤のオイラー系に拡張する研究に取り組み成果を得ていた。この議論の拡張には成功したが、Heegner 点と加藤のオイラー系の局所条件などの違いにより、Mazur-Tate元への応用という点から見るとまだ不十分な点があった。 今年度は最終的に、Mazur-Tate元の関数等式に着目することで前年度までに得られた結果を改良することができ、弱消滅予想の非常に多くの場合を解決できた。この結果に関する論文を現在準備中である。
|
Research Progress Status |
26年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
26年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(3 results)