• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The Hitchin-Kobayashi correspondence for Manifolds

Research Project

Project/Area Number 13440023
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

MABUTCHI Toshiki  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80116102)

Co-Investigator(Kenkyū-buntansha) KOMATSU Gen  KOMATSU,Gen, 大学院・理学研究科, 助教授 (60108446)
FUJIWARA Akio  FUJIWARA,Akio, 大学院・理学研究科, 助教授 (30251359)
SUKUMA Makoto  SUKUMA,Makoto, 大学院・理学研究科, 助教授 (30178602)
YAMATO Kenji  YAMATO,Kenji, 大学院・理学研究科, 助教授 (70093474)
ENOKI Ichiro  ENOKI,Ichiro, 大学院・理学研究科, 助教授 (20146806)
翁 林  名古屋大学, 大学院・多元数理科学研究科, 助教授 (60304002)
小林 亮一  名古屋大学, 大学院・多元数理科学研究科, 教授 (20162034)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥10,700,000 (Direct Cost: ¥10,700,000)
Fiscal Year 2003: ¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2002: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥3,900,000 (Direct Cost: ¥3,900,000)
KeywordsHitchin-Kobayashi correspondence / Stability / Kahler-Einstein metric / Extremal Kahler metric / constant scalar curvature / Zhang's critical matric / Chow metric / Asymptotic Bergman Kernel / Extremal-Kahler計量 / Zhnng / Bando-Calabi-Futaki指標 / kahler-Einstein計量 / Zhang
Research Abstract

Recently, Donaldson established the stability of a projective algebraic Kahler manifold M of constant scalar curvature essentially when the connected linear algebraic part G(M) of the group of holomorphic automorphisms of M is selnisimple.
By generalizing the concept of stability to the case where G(M) is not semisimple, we extend Donaldson's result to extremal Kahler cases even when G(M) is not semisimple. Namely, we showed that a polarized projective algebraic manifold with an extremal Kahler metric in polarization class is always stable in this generalized sense. This in particular implies that an extremal Kahler metric in a fixed integral Kahler class on a projective algebraic manifold M is unique, if any, modulo the action of G(M).

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] T.Mabuchi: "Stability of extremal Kahler manifolds"Osaka J.Math.. 41(to appear). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "An obstruction to asymptotic semistability and approximate critical metrics"Osaka J.Math.. 41(to appear). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Multiplier Hermitian structures on Kahler manifolds"Nagoya Math.J.. 170. 73-115 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] A.Futaki, T.Mabuchi: "Moment maps and symmetric multilinear forms associated with symplectic classes"Asian Math J.. 6. 349-372 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi, Y.Nakagawa: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math.Ann.. 324. 187-193 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Heat Kernel estimates and the Green functions on multiplier Hermitian manifolds"Tohoku Math.J.. 54. 259-275 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Stability of extremal Kahler manifolds"Osaka J.Math.. vol.41 (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "An obstruction to asymptotic semistability and approximate critical metrics"Osaka J.Math.. vol.41 (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Multiplier Hermitian structures on Kahler manifolds"Nagoya Math.J.. vo1.170. 73-115 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] A.Putaki, T.Mabuchi: "Moment maps and syrpmetric multilinear forms associated with symplectic classes"Asian Math.J.. vol.6. 349-372 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi, Y.Nakagawa: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math. Ann.. vol.324. 187-193 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Heat Kernel estimates and the Green functions on multiplier Hermitian manifolds"Tohoku Math.J. vo1.54. 259-275 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mabuchi: "Multiplier Hermitian Structures on Kahler manifolds"Nagoya Math.J.. 170. 1-43 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Mabuchi: "An obstruction to asymptotic somistability and approximate critical metrics"Osaka J.Math.. 41(掲載予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Fujiwara: "Quantum parameter estimation of a generalized Pauli channel (with H.Imai)"J.Physics A. 36. 8093-9103 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Mabuchi, Y.Nakagawa: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math.Ann.. vol.324. 187-193 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Futaki, T.Mabuchi: "Moment maps and symmetric multilinear forms associated with symplectic classes"Asian J.Math.. vol.6. 349-372 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "A Theorem of Calabi-Matsushima's type"Osaka J.Math.. vol.39. 49-57 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "Heat Kernel estimates and the Green functions on multiplier Hermitian manifolds"Tohoku Math.J.. vol.54. 259-275 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "A topological Albanese map of a higher order"Lecture Note Series in Math., Osaka Univ.. vol.7. 177-193 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mabuchi, T.: "Vector field energies and critical metrics on Kahler manifolds"Nagoya Math.J.. 162. 41-63 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T., Y.Nakagawa: "An obstruction to semistability of manifolds"Proc.Japan Acad.. 77. 47-49 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T.: "A theorem of Calabi-Matsushima's type"Osaka J.Math.. 39. 1-9 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T.: "Heat Kernel estimates and the Green functions on multiplier Hermition manifolds"Tohoku Math.J.. (to appear).

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi