• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of Gauss Mapping

Research Project

Project/Area Number 13640073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

KIMURA Makoto  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (30186332)

Co-Investigator(Kenkyū-buntansha) MAEDA Sadahiro  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (40181581)
HATTORI Yasunao  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (20144553)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2002: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2001: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsDifferential Geometry / Gauss map / Minimal submanifolds / Special Lagrangian / 特殊ラグランジュ性 / グラスマン多様体 / 特殊ラグランジュ部分多様体 / ツイスター空間 / 四元数対称空間 / 合同性
Research Abstract

First we investigated submanifolds M with degenerate Gauss mapping in spheres S^n. The Gauss map of M to real Grassmannian is constant if and only if M is totally geodesic in S^n, so the rank of the Gauss map measures the degree of how shape of M is near to the totally geodesic one. On the other hand, each leaf of the foliation given by the kernel of the differential of the Gauss map. So essential problem is that for a submanifold M in S^n foliated by great spheres, find the condition of which along each leaf the Gauss map is constant. In this research, we give general method to construct submanifolds foliated by great spheres in S^n by using the canonical sphere bundle over real Grassmanniam. Moreover, for either a circle bundle over complex submanifolds in complex quadrics or the twistor space over quaternionic symmetric spaces, we showed that along each fiber of the sphere bundles over submanifolds, the Gauss map is constant, and their twisted normal cones are special Lagrangian in complex Euclidean space.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] G.Ishikawa, M.Kimura, R.Miyaoka: "Submanifolds with degenerate Gauss mapping in spheres"Adv.Studies in Pure Math.. 37. 115-149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] U-Hang Ki, M.Kimura, S.Maeda: "Geometry of holomorphic distributions of real hypersurfaces in a complex projective space"Czec Math. J.. 51. 197-204 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] B.Y.Chen, S.Maeda: "Hopf hypersurfaces with constant principal curvatures in complex projective or hyperbolic spaces"Tokyo J. Math.. 24. 133-152 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Suizu, S.Maeda, T.Adachi: "Characterization of totally geocdesic Kuhler immersions"Hokkaido Math. J.. 31. 629-641 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y Hattori, K.Hashimoto: "On the Nagata's star index *_K(X)"Topology and its appl.. 122. 201-204 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G,Ishikawa., M,Kimura., R,Miyaoka.: "Submanifolds with degenerate Gauss mappings is spheres"Adv. Studies in Pure Math.. 37. 115-149 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] U-Hang Ki., M,Kimura., S,Maeda.: "Geometry of holomorphic distributions of real hypersurfaces in a complex projective space"Czec. Math. J.. 51. 197-204 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] B.Y.Chen., S,Maeda.: "Hopf hypersurfaces with constant principal curvatures in complex projective spaces"Tokyo J. Math.. 24. 133-152 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K,Suizu., S,Maeda., T,Adachi.: "Characterization of totally geodesic Ka^^<..>hler immersions"Hokkaido Math. J.. 31. 629-641 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y,Hattori., K,Hashimoto.: "On the Nagata's star index *_k(X)"Topology and its Appl.. 122. 201-204 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.Ishikawa, M.Kimura, R.Miyaoka: "Submanifolds with degenerate Gauss mappings in spheres"Adv. Studies in Pure Math.. 37. 115-149 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] U-Hang Ki, M.Kimura, S.Maeda: "Geometry of holomorphic distributions of real hypersunfaces in a complex projective space"Czec. Math. J.. 51. 197-204 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] By Chen, S.Maeda: "Hopt hypersurfaces with constant principal curvatures in complex projective in hyperbolic space"Tokyo J. Math.. 24. 133-152 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Adachi, S.Maeda, M.Yamagishi: "Length Spectrum of Geodesic spheres in a non-tlat complex space form"J. Math. Soc. Japan. 54. 373-408 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Suizu, S.Maeda, T.Adachi: "Characterization of totally geodesic kahler immersions"Hokkaido Math. J.. 31. 629-641 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Hattori, K.Hashimoto: "On the Nagata's star-incle-*_k"Topology and its appl.. 122. 201-204 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] U-Hang Ki, M.Kimura, S.Maeda: "Geometry of holomorphic distributions of real hypersurfaces in a complex projective space"Czec.Math.J.. 51. 197-204 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Adachi, S.Maeda: "Length spectrum of geodesic spheres in a non-flat complex space form"J.Math.Soc.Japan. (to appear).

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Adachi, S.Maeda, K.Suizu: "Characterization of totally geodesic Kahler immersions"Hokkaido Math.J.. (to appear).

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Hattori, K.Hashimoto: "On Nagata's star-index *_k(X)"Topology Appl. (to appear).

    • Related Report
      2001 Annual Research Report
  • [Publications] V.Chatyrko, Y.Hattori: "Estimations of small transfinite dimension in separable metrizable spaces"Tsukuba J Math. (to appear).

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi