• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integrable Systems and WKB Analysis

Research Project

Project/Area Number 13640167
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

TAKEI Yoshitsugu  KYOTO UNIVERSITY, Research Institute for Mathematical Sciences, Associate Professor, 数理解析研究所, 助教授 (00212019)

Co-Investigator(Kenkyū-buntansha) KOIKE Tatsuya  KYOTO UNIVERSITY Graduate School of Science, Instructor, 大学院・理学研究科, 助手 (80324599)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,900,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2001: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsExact WKB analysis / Painleve hierarchy / Lax pair / Turning point / (New) Stokes curve / Exact steepest descent method / Transition probability / Microdifferential equation / new Stokes curve / Stokes曲線 / 仮想的変わり点 / 接続公式 / エネルギーレベルの交差
Research Abstract

In this project, with the aid of Prof. T. Kawai (RIMS, Kyoto Univ.) and Mr. Y. Nishikawa (a graduate student of Kyoto Univ.), we have mainly studied generalization of exact WKB analysis to higher order Painleve equations that are obtained from integrable systems. First, for several hierarchies of higher order Painleve equations such as the (P_I) hierarchy obtained from the most degenerate Garnier system, the (P_<II>) hierarchy obtained by reduction of the KdV hierarchy, and the Noumi-Yamada system (i.e., (P_<IV>) and (P_V) hierarchy), we have found that turning points and Stokes curves ("Stokes geometry") of these nonlinear equations are closely related with those of the associated Lax pair. Secondly, it is discovered that Stokes curves of higher order Painleve equations do cross and a new Stokes curve emanates from a crossing point. A new Stokes curve can be understood as a Stokes curve emanating from a virtual turning point, which is also characterized in terms of the Stokes geometry of the associated Lax pair. Lastly, we have shown that a 0-parameter solution (i.e., an algebraically constructed formal solution without any free parameter) of any member of (P_I) and (P_<II>) hierarchies can be locally transformed to that of the traditional (P_I) equation near a simple turning point of the first kind. To examine if these results hold for more general nonlinear equations arising as compatibility condition of Lax pairs will be a main problem in future. In parallel with the above researches, we have also studied the following related subjects: (i) refinement of the exact steepest descent method, a method detecting new Stokes curves of linear equations, (ii) exact WKB analysis for systems of linear equations and its application to computations of transition probabilities, and (iii) exact WKB analysis for microdifferential equations of WKB type.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (30 results)

All Other

All Publications (30 results)

  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : A new method for the description of Stokes curves"Journal of Mathematical Physics. 42. 3691-3713 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics A : Mathematical and General. 35. 2401-2430 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM Journal, Australian Mathematical Society. 44. 111-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes curves""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 1-22 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Koike, Y.Takei: "The effect of new Stokes curves in the exact steepest descent method""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 186-199 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 竹井義次: "完全WKB解析、そして完全最急降下法-特異摂動の代数解析学続論-"数学. 55. 350-367 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On global aspects of exact WKB analysis of operators admitting infinitely many phases"Contemporary Mathematics. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Takei: "Toward the exact WKB analysis for higher-order Painleve equations-The case of Noumi-Yamada systems"Publications of RIMS, Kyoto University. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method: A new method for the description of Stokes curves"Journal of -Mathematical Physics. 42. 3691-3713 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics A : Mathematical and General. 35. 2401-2430 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's con-nection problem for the second Painleve equation"ANZIAM Journal, Australian Mathematical Society. 44. 111-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes curves"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 1-22 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Koike, Y.Takei: "The effect of new Stokes curves in the exact steepest descent method"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 186-199 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Takei: "Exact WKB analysis, and exact steepest descent method"Sugaku(In Japanese.). 55. 350-367 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y: "On global aspects of exact WKB analysis of operators admitting infinitely many phases"Contemporary Mathematics. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Takei: "Toward the exact WKB analysis for higher-order Painleve equations -The case of Noumi-Yamada systems"Publications of RIMS,(Kyoto University). (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 竹井義次: "完全WKB解析、そして完全最急降下法-特異摂動の代数解析学続論-"数学. 55. 350-367 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On global aspects of exact WKB analysis of operators admitting infinitely many phases"Contemporary Mathematics. (掲載予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Takei: "Toward the exact WKB analysis for higher-order Painleve equations -The case of Noumi-Yamada systems"Publications of RIMS, Kyoto University. (掲載予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics A : Mathematical and General. 35. 2401-2430 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM Journal, Australian Mathematical Society. 44. 111-119 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes curves""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 1-22 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Koike, Y.Takei: "The effect of new Stokes curves in the exact steepest descent method""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 186-199 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 青木貴史, 河合隆裕, 小池達也, 竹井義次: "野海・山田方程式系のWKB解析に向けて"数理解析研究所講究録. 1296. 43-47 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. (掲載予定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : A new method for the description of Stokes curves"Journal of Mathematical Physics. 42. 3691-3713 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics, A. (掲載予定). (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi