Project/Area Number |
13670007
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General anatomy (including Histology/Embryology)
|
Research Institution | University of Yamanashi, Faculty of Medicine |
Principal Investigator |
BABA Takeshi University of Yamanashi, Faculty of Medicine, Associate Professor, 医学部, 助教授 (90208710)
|
Project Period (FY) |
2001 – 2002
|
Project Status |
Completed (Fiscal Year 2002)
|
Budget Amount *help |
¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2001: ¥2,500,000 (Direct Cost: ¥2,500,000)
|
Keywords | PEG-cholesterol / okadaic acid / actin microfilament / lipid raft / K562 cell / endocytosis / PEG-コレストロール / ダイナミン |
Research Abstract |
Interconnection between surface microdomains and the actin cytoskeleton is vital to various cellular activities. We studied the responses of okadaic acid (OKA)-treated K562 leukemia cells to crosslinking of membrane microdomains. Although OKA alone induced clustering of surface-bound F-actin, addition of a biotinylated poly(ethylene glycol) derivative of cholesterol (bPEG-Chol) and subsequent binding of streptavidin (SA) further induced accumulation of the clusters, resulting in the formation of a spherical cell extrusion. This extrusion was also induced by direct crosslinking of a raft marker, CD59, and ganglioside GM1. In addition, we found that knockout of the gene encoding Fyn kinase inhibited formation of the spherical extrusion in murine T-cells. In bPEG-Chol/SA-treated cells, CD59, ganglioside GM1, and clathrin/AP-2 were all accumulated on the surface of the actin-rich extrusion, whereas dynamin and transferrin receptors were unaffected. Intermediate filaments, mitochondria, and other vesicles also accumulated. These results suggest that crosslinking of membrane domains exaggerates the linkage between actin and a defined set of membrane proteins in OKA-treated cells.
|