• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ホモロジー論におけるカテゴリー論的手法

Research Project

Project/Area Number 13874009
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

河野 明  京都大学, 大学院・理学研究科, 教授 (00093237)

Co-Investigator(Kenkyū-buntansha) 國府 寛司  京都大学, 大学院・理学研究科, 助教授 (50202057)
深谷 賢治  京都大学, 大学院・理学研究科, 教授 (30165261)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywords圏 / ホモトピー代数 / 局所化 / ヱタールホモトピー / 分類空間 / K理論 / Bott周期性定理 / カテゴリー / Conley index
Research Abstract

1.Fibrewise homotopy theolyとゲージ群のホモトピー論的研究
このテーマについては代表者と研究協力者佃修一氏(琉球大学理学部助手)が協力して研究した。
有限複体を底空間とする主束の同伴随伴束のホモトピー型の研究を、fibrewise homotopy theoryを用いて研究し、その分類に成功した。このときfibrewiseな局所化について研究し、この意味でいつこの随伴束が自明かという問題も解決することで分類問題を解決した。ゲージ群は、この随伴束の切断の空間と考えられるので、さらに岡山理科大学栗林勝彦助教授との共同研究では随伴束のコホモロジーの構造についても研究した。
これらの研究では、圏論の考え方が重要であった。
2.ホモトピー代数の研究
ホモトピー代数はGrothendickのSGAにその起源があり、その後Quillenによって定式化された。
その後あまり注目されなかったが最近代数多様体のホモトピー論を考える上で重要になってきている。
このように普通の意味でのホモトピーが考えられない圏でのホモトピー論ではモデルカテゴリーを考えることでホモトピー論を展開する必要が多い。この方向で重要なのがヱタールホモトピー論である。
従来よりも圏論的な手法を取り入れることによりSpin(2n+1)/U(n)とSp(n)/U(n)は1/2で局所化するとホモトピー同値であることを示すことができた。
3.L-S Category
L-S Categoryは多様体の上の可微分な函数の特異点の数を数える問題を起源としている。この問題を考えるときに高次のホモトピー結合性の問題と深い関係があることが最近九州大学数理科学院の岩瀬則夫助教授の研究で発見された。代表者は岩瀬氏と共同でいくつかの成果を得ており現在プレプリントを作成中である。

Report

(2 results)
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Akira Kono: "Characterization of the mod 3 cohomology of E7"Proc.AMS.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] Akira Kono: "On the cohomology of E8"J.Math.Kyoto Univ.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] Akira Kono: "Topological characterrization of extensor product of BU"J.Math.Kyoto Univ.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] Akira Kono: "On [X, U(n)] when dim X is 2n"J.Math.Kyoto Univ.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] Akira Kono: "Commutativity of the group of self homotopy classes of Lie groups"Bull.London Math.Soc.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Kokubu: "Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing"J.Dynam.Differential Equations14. 1. 63-84 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Kono, O.Nishimura: "On the cohomology of E_8"J. Math Kyoto Univ.. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] A.Kono, D.Kishimoto: "Topological characterization of extensor product of BU"J. Math Kyoto Univ.. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] A.J.Homburg, H.Kokubu: "Vincent Homoclinic-doubling cascades"Arch. Ration. Mech. Anal.. 160・3. 195-243 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] F.Dumortier, H.Kokubu: "New aspects in the unfolding of the nilpotent singularity of codimension three"Dyn. Syst.. 16・1. 63-95 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 河野明, 玉木大: "一般コホモロジー"岩波書店. 236 (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi