Project/Area Number |
13J01011
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Fluid engineering
|
Research Institution | Kyoto University |
Principal Investigator |
初鳥 匡成 京都大学, 工学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2015: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2014: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2013: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | すべり流 / 一般すべり流理論 / ボルツマン方程式 / 希薄気体 / 気体分子運動論 / 分子気体力学 / クヌーセン数 / すべり条件 / クヌーセン層 / 微小系気体流 / 剛体球分子気体 |
Outline of Annual Research Achievements |
マイクロ流路などの微小系の気体流の振舞いは,通常の巨視的流体力学では正確に把握できない.しかし,この場合にも,ボルツマン方程式の系統的な漸近理論(曾根の一般すべり流理論)により,微小系の気体流の多くは通常の流体力学を適切に補正して扱える.一般すべり流理論によると,気体の振舞いは大域的には流体力学的方程式と所定の適切なすべり境界条件で記述でき,境界近傍の薄い層では補正(クヌーセン層補正)が加わる.ここで,境界条件中に現れるすべり係数の値とクヌーセン層補正のデータは,層の構造を決める線形化ボルツマン方程式の空間1次元の半無限問題(クヌーセン層問題)を解いて得られる. 一般すべり流理論は定常系に対してはクヌーセン数展開の2次まで確立されている.一方で,非定常問題に対しては,1次までの結果が曾根により導かれているものの, 2次のレベルでのそれは未だ知られておらず,定常理論と同じレベルの完成度には至っていなかった. 本研究では,非定常問題に対する一般すべり流理論をクヌーセン数の2次まで構築する. 前年度までに,解の構造を半解析的に把握できるというボルツマン方程式の積分形の利点を活かした2次クヌーセン層問題の新たな解法を構築し,データの収集を終えていた.今年度はまず,その結果を学術誌に投稿し,これは掲載された. 本年度の残りの時間では,マッハ数の大きさが有限の非線形な低希薄度気体の振舞いに関する研究を行った.曾根の非線形理論では,定常問題に対して,気体の振舞いが大域的にはオイラー方程式と粘性境界層内部の境界層方程式により記述できることが明らかにされている.一方で,本研究では,気体の非定常的な振舞いをクヌーセン数の1次まで正しく与える圧縮性のナビエ・ストークス方程式に対するすべり境界条件をチャップマン-エンスコグ展開とクヌーセン層解析を用いて導出した.
|
Research Progress Status |
27年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
27年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(8 results)