ケーラーリッチフローのある種の変形とその自己相似解
Project/Area Number |
13J03077
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Geometry
|
Research Institution | Nagoya University |
Principal Investigator |
高橋 良輔 名古屋大学, 多元数理科学研究科, 特別研究員(PD)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2015: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2014: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2013: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | Fano多様体 / ケーラー・リッチソリトン / Chow安定性 / balanced計量 / ケーラーリッチソリトン / ケーラーリッチフロー / 射影直線束 |
Outline of Annual Research Achievements |
今年度は,Fano多様体X上のケーラー・リッチソリトン(KS)と呼ばれる標準計量に対して,2つの結果を挙げることができた. 1つは,XがKSを許容すれば,量子化ソリトンの列を許容し,さらにこの列はKSに自己同型群の作用を除いて弱収束するというものである.XはFanoなので,反標準束-Kの十分大きな冪によって,Xを射影空間に埋め込むことができる.Tianは1990年の論文において,-K上の任意のHermite計量は,Bergman計量(すなわち,小平埋め込みによるFubini-Study計量の引き戻し)の-Kの冪を無限大に飛ばしたときの近似として表せることを証明した.この事実は,KSの存在問題が,``量子化ソリトンの存在問題''という有限次元の変分問題のある種の極限として解釈できることを示唆しており,今回の結果もそのような描像の1つである. もう1つは,Xの量子化ソリトンベクトル場は自明であるとしたとき,Xが量子化ソリトンを許容すれば漸近的に反標準的Chow安定であるというものである.これは東京大学数理科学研究科の斎藤俊輔氏との共同研究による.1つ目の結果で構成した量子化ソリトンは自己同型群の作用に対して不変である.このことから,量子化ソリトンが存在するためには,X上の正則ベクトル場全体の成すLie環上のある指標(量子化二木不変量)が消滅する必要があることが分かる.我々は,量子化二木不変量をテスト配位と呼ばれる,複素1次元パラメータをもつXの退化族に対して拡張することにより,複素構造を飛び越えて定義される障害に一般化することに成功した(反標準的Chow安定性の定式化).ただし,現時点では中心ファイバーが対数端末特異点をもつFano代数多様体であるような,特別なテスト配位に対してしか障害が定式化されていないため,これを一般のテスト配位に対して拡張することが今後の課題となる.
|
Research Progress Status |
27年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
27年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(24 results)