• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Homogeneous spaces and variational problems

Research Project

Project/Area Number 14540058
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionUniversity of Tsukuba

Principal Investigator

TASAKI Hiroyuki  University of Tsukuba, Institute of Mathematics, Associate Professor, 数学系, 助教授 (30179684)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Hideya  Meijo University, Professor, 理工学部, 教授 (60218419)
MORIYA Katsuhiro  University of Tsukuba, Assistant, 数学系, 助手 (50322011)
ITOH Mitsuhiro  University of Tsukuba, Professor, 数学系, 教授 (40015912)
KOKUBU Masatoshi  Tokyo Denki University, Associate Professor, 工学部, 助教授 (50287439)
IKAWA Osamu  Fukushima National College of Technology, Associate Professor, 一般科, 助教授 (60249745)
芥川 玲子(相山 玲子)  筑波大学, 数学系, 講師 (20222466)
菅野 貴弘  筑波大学, 数学系, 助手 (30344865)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 2003: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2002: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywordshomogeneous spaces / variational problems / integral geometry / 交叉積分公式 / Poincareの公式 / Croftonの公式 / Kahler角度
Research Abstract

The head investigator introduced the notion "multiple Kahler angle" and showed that we can describe integral geometry of submanifolds in complex projective spaces explicitly by the use of multiple Kahler angle. In the case of the complex projective plane he obtained with Kang more detailed Poincare formula. These Poincare formulae has an application on estimate of the area and the integral of Kahler angle of real surfaces. By this estimate we can get a minimizing solution of a certain variational problem. Moreover the head investigator published Poincare formula of real surfaces and submanifolds of codimension 2. The calculation of this result is obtained by the use of an integral on a Lie group and some symmetric pairs
The head investigator showed that an integral on a Lie group by the use of some symmetric pairs is effective in formulation of Poincare formulae in the other homogeneous spaces. Takahashi, Kang, Sakai and the head investigator has studied integral geometry of almost complex submanifolds in homogeneous almost Hermitian spaces and formulated Poincare formulae of almost complex submanifolds in homogeneous almost Hermitian spaces, which are generalization of classical and fundamental formulae in complex projective spaces obtaind by Santalo. Sakai has generalized these results

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] H.Kang, H.Tasaki: "Integral geometry of real surfaces in the complex projective plane"Geometriae Dedicata. 90. 99-106 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Integral geometry of submanifolds of real dimension two and codimension two i n complex projective spaces"Contemporary Math.. 308. 315-327 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Generalization of Kahler angle and integral geometry in complex projective spaces II"Math.Nachr.. 252. 106-112 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Integral geometry under the action of the first symplectic group"Archly der Mathematik (Base I). 80. 106-112 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] O.Ikawa: "Hamiltonian dynamics of a charged particle"Hokkaido Math.J.. 23. 661-671 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Kokubu: "On isotropic minimal surfaces in Euclidean space"Advanced Studies in Pure Mathematics. 34. 155-171 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kang, H.Tasaki: "Integral geometry of real surfaces in the complex projective plane"Geometriae Dedicata. 90. 99-106 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Integral geometry of submanifolds of real dimension two and codimension two in complex projective spaces"Contemporary Math.. 308. 315-327 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Generalization of Kahler angle and integral geometry in complex projective spaces II"Math.Nachr.. 252. 106-112 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Integral geometry under the action of the first symplectic group"Archiv der Mathematik (Basel). 80. 106-112 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] O.Ikawa: "Hamiltonian dynamics of a charged particle"Hokkaido Math.J. 23. 661-671 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Kokubu: "On isotropic minimal surfaces in Euclidean sp ace"Advanced Studies in Pure Mathematics. 34. 155-171 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Tasaki: "Generalization of Kahler angle and integral geometry in complex projective spaces II"Math.Nachr.. 252. 106-1112 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Tasaki: "Integral geometry under the action of the first symplectic group"Archiv der Mathematik (Basel). 80. 106-112 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Tasaki: "Poincare formulae of submanifolds in complex space forms"Proceedings of the 6th International Workshop on Complex Structures and Vector Fields. 205-218 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Moriya: "Existence of algebraic minimal surfaces for an arbitrary puncture set"Proc.Amer.Math.Soc.. 131・1. 303-307 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] O.Ikawa: "Hamiltonian dynamics of a charged particle"Hokkaido Math.J.. 32・3. 661-671 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Kokubu: "An elementary proof of Small's formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C)"Osaka J.Math.. 40・3. 697-715 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Tasaki, Kang: "Integral geometry of real surfaces in the complex projective plane"Geometriae Dedicata. 90. 99-106 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 田崎 博之: "等質空間の部分多様体の積分幾何学"数学. 54・3. 280-291 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Tasaki: "Integral geometry of submanifolds of real dimension two and eodimension two in complex projective spaces"Contemporary Math.. 308. 315-227 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Itoh: "Contact metric 5-manifolds, CR twistor spaces and integrability"Jour. Math. Phys.. 43・7. 3783-3797 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Mariya: "Existence of algebraic minimal surfaces for arbitrary puncture set"Proc.Amer.Math.Soc.. 131・1. 303-307 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Kanno: "Area-minimizing cone over the cannoical embedding of symmetric R-spaces"Indiana Univ. Math. Jour.. 51・1. 89-125 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi