• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorial structures on Riemann surfaces and topological properties of the moduli space.

Research Project

Project/Area Number 14540068
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOchanomizu University

Principal Investigator

OHBA Kiyoshi  Ochanomizu University, Faculty of Science, associate professor, 理学部, 助手 (80242337)

Co-Investigator(Kenkyū-buntansha) YOKOGAWA Koji  Ochanomizu University, Faculty of Science, professor, 大学院・人間文化研究科, 教授 (40240189)
HASHIMOTO Yoshitake  Osaka City University, Graduate School of Science, associate professor, 大学院・理学研究科, 助教授 (20271182)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsRiemann surface / Abelian differential / combinatorial structure / genus / Haefliger knot / 高次元knot / Einstein計量 / 結び目解消数 / 2次微分 / 代数曲線
Research Abstract

Our results are as follows :
1.We consider Riemann surfaces with Abelian differential constructed from lightning pairs. A lightning pair is a pieacewise linear loop in the complex plane determined by a certain kind of combinatorial data. We give a method of obtaining from the combinatorial data of a lightning pair the genus of the resulting Riemann surface.
2.We give a sufficient condition for the completion of the form which is induced from a pre-Tango structure to have non-closed global differential 1-forms. Moreover, we give a lower bound for the dimension of the locus of the curves which have pre-Tango structures inducing such completions, in the moduli space of curves.
3.A Haefliger (6,3)-knot means a smoothly embedded 3-sphere in the 6-sphere. We give a definition of unknotting numbers of Haefliger (6,3)-knots geometrically, and determine the unknotting number of each Haefliger (6,3)-knot.
4.Twisting the Killing vector fields of certain kind of Kerr-Ads black holes, we reproduce the compact Sasaki-Einstein manifolds constructed by Gauntlett, Martelli, Sparks and Waldram. We also discuss an implication of the twist in string theory and M-theory.
5.We construct explicitly a new infinite series of Einstein metrics on the S^3-bundles over S^2, which containing infinite numbers of inhomogeneous ones.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (16 results)

All 2004 2003 2002 Other

All Journal Article (13 results) Publications (3 results)

  • [Journal Article] The unknotting numbers of knotted 3-spheres in the G-sphere in the sense of Haefliger2004

    • Author(s)
      大場 清
    • Journal Title

      Surikaisekikenkyusho kokyuroku 1393

      Pages: 132-139

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Sasaki-Einstein twist of Kerr-Ads black holes2004

    • Author(s)
      橋本 義武
    • Journal Title

      Physical Letters B 600

      Pages: 270-274

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The unknotting numbers of knotted 3-spheres in the 6-sphere in the Sense of Haefliger2004

    • Author(s)
      Kiyoshi Ohba
    • Journal Title

      Surikaisekikenkyusho Kokyuroku 1393

      Pages: 132-139

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Sasaki-Einstein twist of Kerr-Ads black holes2004

    • Author(s)
      Yoshitake Hashimoto
    • Journal Title

      Physical Letters B 600

      Pages: 270-274

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The unknotting numbers of knotted 3-spheres in the 6-sphere in the sense of Haefliger2004

    • Author(s)
      大場 清
    • Journal Title

      Surikaisekikenkyusho Kokyuroku 1393

      Pages: 132-139

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Sasaki-Einstein twist of Kerr-Ads black holes2004

    • Author(s)
      橋本 義武
    • Journal Title

      Physics letters B 600

      Pages: 270-274

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Genera of Riemann surfaces constructed from lightning polygons2003

    • Author(s)
      大場 清
    • Journal Title

      Surikaisekikenkyusho Kokyuroku 1329

      Pages: 151-155

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Genera of Riemann surfaces constructed from lightning polygons2003

    • Author(s)
      Kiyoshi Ohba
    • Journal Title

      Surikaisekikenkyusho Kokyuroku 1329

      Pages: 151-155

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Pre-Tango structures on curves2002

    • Author(s)
      横川 光司
    • Journal Title

      Tohoku Mathematical Journal 54

      Pages: 227-237

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Pre-Tango structures on curves2002

    • Author(s)
      Koji Yokogawa
    • Journal Title

      Tohoku Mathematical Journal 54

      Pages: 227-237

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] New infinite series of Einstein metrics on sphere bundles from Ads black holes

    • Author(s)
      橋本 義武
    • Journal Title

      Communications in Mathematical Physics (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] New infinite series of Einstein metrics on sphere bundles from Ads Black holes

    • Author(s)
      Yoshitake Hashimoto
    • Journal Title

      Communications in Mathematical Physics, (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] New infinite series of Einstein metrics on sphere bundles from Ads black holes

    • Author(s)
      橋本 義武
    • Journal Title

      Communications in Mathematical Physics (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Publications] 大場 清: "Genera of Riemann surfaces constructed from lightning polygons"Surikaisekikenkyusho Kokyuroku. 1329. 151-155 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 横川 光司: "Pre-Tango structures on curves"The Tohoku Mathematical Journal. 54. 227-237 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 大場 清: "Genera of Riemann surfaces constructed from lightning polygons"Surikaisekikenkyusho Kokyuroku. (発表予定).

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi