• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Degeneration of closed Riemann surfaces and limits of Jacobi varieties

Research Project

Project/Area Number 14540163
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionToyama University

Principal Investigator

ABE Yukitaka  Toyama University, Faculty of Science, Math, Professor, 理学部, 教授 (80167949)

Co-Investigator(Kenkyū-buntansha) AZUKAWA Kazuo  Toyama University, Faculty of Science, Math, Professor, 理学部, 教授 (20018998)
KODA Takashi  Toyama University, Faculty of Science, Math, Associate Professor, 理学部, 助教授 (40215273)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2002: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsclosed Riemann surface / jacobi variety / theta constant / Satake compactification / moduli space / degenerate abelian function / モジュライ空間 / ヤコビ多用体 / 代数的加法定理
Research Abstract

Any closed Riemann surface of genus 2 is regarded as a double covering surface over the one-dimensional complex projective space with 6 branch points. We fix one of the branch points at the infinity. We found out a way to represent ratios of differences of these branch points by theta constants. We investigated behaviour of the ratios when Jacobi varieties of closed Riemann surfaces tend to limits. Then we recognized which curves are regarded as limits of degeneration.
We also considered limits of Jacobi varieties. Compactification of the moduli space of abelian varieties was first given by Satake in 1956. It is very natural to require that limits of abelian varieties have function fields as limits of abelian function fields. These function fields are just what Weierstrass stated. We could determine them. From this point of view, the Satake compactification is the most natural one. Then we considered limits of Jacobi varieties in the Satake compactification in the above.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (13 results)

All 2004 2003 Other

All Journal Article (11 results) Publications (2 results)

  • [Journal Article] Universal functions on Stein manifolds2004

    • Author(s)
      Yukitaka Abe
    • Journal Title

      J.Math.Soc.Japan 56

      Pages: 31-43

    • NAID

      10013122530

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Almost Kaehler structures with a fixed Kaehler class2004

    • Author(s)
      Takashi Koda
    • Journal Title

      Math.J. Toyama Univ. 27

      Pages: 125-131

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Almost Kaehler structures with a.fixed Kaehler class2004

    • Author(s)
      Takashi Koda
    • Journal Title

      Math.J.Toyama Univ. 27

      Pages: 125-131

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Almost Kahler structures with a fixed Kahler class2004

    • Author(s)
      Takashi Koda
    • Journal Title

      Math.J.Toyama Univ. 27

      Pages: 125-131

    • NAID

      110004679105

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Construction of automorphic forms for ample factors of guasi-abelian varieties2003

    • Author(s)
      Yukitaka Abe
    • Journal Title

      Kyushu J.Math. 57

      Pages: 51-85

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Completely magic, lupe and diamond properties of number squares2003

    • Author(s)
      Kazuo Azukawa
    • Journal Title

      Math.J. Toyama Univ. 26

      Pages: 145-152

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Construction of automorphic forms for ample factors of quasi-abelian varieties2003

    • Author(s)
      Yukitaka Abe
    • Journal Title

      Kyushu J.Math. 57

      Pages: 51-85

    • NAID

      130000063043

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Completely magic, lupe and diamond properties of number squares2003

    • Author(s)
      Kazuo Azukawa
    • Journal Title

      Math.J.Toyama Univ. 26

      Pages: 145-152

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem

    • Author(s)
      Yukitaka Abe
    • Journal Title

      J.Math.Soc.Japan (印刷中)

    • NAID

      10017177769

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem

    • Author(s)
      Yukitaka Abe
    • Journal Title

      J.Math.Soc.Japan (to appear)

    • NAID

      10017177769

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem

    • Author(s)
      Yukitaka Abe
    • Journal Title

      J.Math.Soc.Japan (発表予定)

    • NAID

      10017177769

    • Related Report
      2004 Annual Research Report
  • [Publications] Yukitaka Abe, Paolo Zappa: "Universal functions on Stein manifolds"J.Math.Soc.Japan. 56・1. 31-43 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Yukitaka Abe, Paolo Zappa: "Universal functions on Stein manifolds"J.Math.Soc.Japan. 55・4(掲載予定). (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi