• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Jorgensen groups and Schottky spaces

Research Project

Project/Area Number 14540170
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionShizuoka University

Principal Investigator

SATO Hiroki  Shizuoka University, Science, Professor, 理学部, 教授 (40022222)

Co-Investigator(Kenkyū-buntansha) AKUTAGAWA Kazuo  Shizuoka University, Science, Associate Professor, 理学部, 助教授 (80192920)
OKUMURA Yoshihide  Shizuoka University, Science, Associate Professor, 理学部, 助教授 (90214080)
NAKANISHI Toshihiro  Nagoya University, Mathematics, Associate Professor, 大学院・多元数理科学研究所, 助教授 (00172354)
OKUYAMA Yuusuke  kanazawa University, Science, Lecturer, 理学部, 講師 (00334954)
KUMURA Hironori  Shizuoka University, Science, Associate Professor, 理学部, 助教授 (30283336)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2002: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsJorgensen group / Jorgensen number / Jorgensen's inequality / Whitehead link group / Schottky space / Schottky group / Kleinian group / Uniformization of Riemann surface / ホワイトヘッドリンク / ピカール群
Research Abstract

We have studied the following four themes from 2002 to 2003. 1.Jorgensen groups. 2.The Picard group. 3.The Whitehead link group. 4.Classical Schottky spaces and Jorgensen number.
1.Jorgensen groups. A Jorgensen group is a non-elementary two-generator discrete group whose Jorgensen number is one. There are two types -parabolic type and elliptic type-for Jorgensen groups. Here we considered of parabolic type. There are three types for Jorgensen groups of parabolic type (finite type, countably infinite type and uncountably infinite type). We obtained the following. (1)We found all Jorgensen groups of finite type and all Jorgensen groups of countably infinite type in 2002, and (2)we found all Jorgensen groups of uncountably infinite type in 2003. Consequently we found all Jorgensen groups of parabolic type. The results (1) was talked at the International congress of Mathematicians in Beijing in 2002, and the result (2) was talked at Peking University in 2003.
2.The Picard group. We constructed a new fundamental region for the Picard group and we found eight relations for two generators of the group by using the fundamental region. This result was published in the Proceedings of the ISAAC Congress in Berlin in 2003.
3.The Whitehead link group. We proved that the Jorgensen number of the Whitehead link is two. Therefore the Whitehead link is not a Jorgensen group. We talked this result at the Internatonal Conference of Topology in 2002.
4.Classical Schottky spaces and Jorgensen number. We showed that there exists a classical Schottky group whose Jorgensen number is a given real number j【greater than or equal】4. We will talk this result at the International Conference of Potential Theory this summer.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] Hiroki Sato: "Jorgensen groups and the Picard group"Proceedings of The Third ISAAC International Congress. 1. 149-158 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hiroki Sato: "The Jorgensen number of the Whitehead link group"Bol.Soc.Math. Mexicana. to appear. (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiro Nakanishi: "Complexification of lambda length as parameter for SL(2,C) representation space of punctured surface groups,"J. London Math.Soc.. to appear. (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuo Akutagawa: "An obstruction to the positivity of relative Yamabe invariants"Math.Z.. 243. 85-98 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hironori Kumura: "On the intrinsic ultracontractivity for compact manifolds with boundary"Kyushu J.Math.. 57. 29-50 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yusuke Okuyama: "Nevanlinna, Siegel, and Cremer"Indiana Univ.Math.J.. to appear. (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hiroki Sato: "Jorgensen groups and the Picard group"Proc. The Third ISAAC International Congress. 1. 249-258 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hiroki Sato: "The Jorgensen number of the Whitehead link group"Bol.Soc.Math.Mexicana. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiro Nakanishi: "Complexification of lambda length as parameter for SL(2,C) representation space of punctured surface groups"J.London Math.Soc.. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuo Akutagawa: "An obstruction to the positivity of relative Yamabe invariants"Math.Z.. 243. 85-98 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hironori Kumura: "On the intrinsic ultracontractivity for compact manifolds with boundary"Kyushu J. Math.. 57. 29-50 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yusuke Okuyama: "Yusuke Okuyama, Nevannlinnna, Siegel, and Cremer"Indiana Univ. Math. J.. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yusuke Okuyama: "Nevanlinna, Siegel, and Cremer"Indiana Univ.Math.J.. (to appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hiroki Sato: "The Jorgensen number of the Whitehead link group"Bol.Soc.Math.Mexicana. (to appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Toshihiro Nakanishi: "Complexification of lambda length as parameter for SL(2,C) representation space of punctured surface groups,"J.London Math.Soc.. (to appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kazuo Akutagawa: "An obstruction to the positivity of relative Yamabe invariants"Math.Z.. 243. 85-98 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hironori Kumura: "On the intrinsic ultracontractivity for compact manifolds with boundary"Kyushu J.Math.. 57. 29-50 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hiroki Sato: "Jorgensen groups and the Picard group"Proc.The Third ISAAC International Congress. (刊行予定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hiroki Sato: "The Jorgensen number of the Whitehead link"RIMS koukyuroku, Kyoto Univ.. 1270. 77-83 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Kazuo Akutagawa: "Manifolds of projective scalar curvature and conformal cobordism theory"Math.Ann.. 324. 817-840 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Kazuo Akutagawa: "An obstruction to the positivity of relative Yamabe invariant"Math.Z. 243. 85-98 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hironori Kumura: "A note on the absence of eigenvzlues on negatively curved manifolds"Kyushu J.Math.. 56. 109-121 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yusuke Okuyama: "Remarks on several theorems related to finiteness and linealization problem on entire functions"RIMS kokyuroku, Kyoto Univ.. 1269. 42-47 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi