断面幾向種数による偏極多様体の分類と応用についての研究
Project/Area Number |
14740018
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Kochi University |
Principal Investigator |
福間 慶明 高知大学, 理学部, 助教授 (20301319)
|
Project Period (FY) |
2002 – 2004
|
Project Status |
Completed (Fiscal Year 2004)
|
Budget Amount *help |
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2004: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2003: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | 偏極多様体 / 線形系 / 豊富な因子 / 幾何種数 / 断面幾何種数 / H-算術種数 / 断面H-算術種数 / Beltrametti-Sommese予想 / 第2Chern類 / 偏極多様性 / アーベル多様体 |
Research Abstract |
(X,L)を複素数体上定義されたn次元偏極多様体とする.今年度の課題は,第2断面幾何種数g_2(X,L)や第2断面H-算術種数χ^H_2(X,L)等を用いて,代数曲面において知られている結果をn次元偏極多様体(X,L)の場合に一般化できるかについて調べることであった.特に次の問題について主に考えた. 1.(Castelnuovoの不等式の偏極多様体版) κ(K_X+(n-2)L)【greater than or equal】0のときχ^H_2(X,L)【greater than or equal】0が成立するか? 2.(Miyaoka-Yauの不等式の偏極多様体版) κ(K_X+(n-2)L)【greater than or equal】2のとき9χ^H_2(X,L)【greater than or equal】(K_X+(n-2)L)^2L^<n-2>が成立するか? これらに関して以下のような成果を得た. 上記1について:n=3,Lが一般の豊富な因子,κ(K_X+L)【greater than or equal】0のとき,χ^H_2(X,L)>0が成立することを示した.またこの結果の応用としてBeltramettiとSommeseにより予想された問題を3次元の場合に解決することに成功した.それは以下のような結果である:K_X+2Lがnefならばh^0(K_X+2L)>0が成り立つ. さらにK_X+2Lがnefかつh^0(K_x+2L)=1なる3次元偏極多様体(X,L)の分類を得ることもできた.(これらについては早稲田大学,津山高専でおこなわれた研究集会で発表した.) 上記2について:次のことが示せた.n【greater than or equal】3かつκ(X)【greater than or equal】0のとき12χ^H_2(X,L)>(K_X+(n-2)L)^2L^<n-2>が成立する.
|
Report
(3 results)
Research Products
(8 results)