• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of innovative numerical integrators which preserving all of the conserved quantities

Research Project

Project/Area Number 15340030
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKyoto University

Principal Investigator

NAKAMURA Yoshimasa  Kyoto University, Graduate School of Informatics, Professor, 情報学研究科, 教授 (50172458)

Co-Investigator(Kenkyū-buntansha) TSUJIMOTO Satoshi  Kyoto University, Graduate School of Informatics, Lecturer, 情報学研究科, 講師 (60287977)
MINESAKI Yokitaka  Kyoto University, Graduate School of Informatics, Research Associate, 情報学研究科, 助手 (70378834)
OHTA Yasuhiro  Kobe University, Department of Mathematics, Associate Professor, 大学院自然科学研究科, 助教授 (10213745)
Project Period (FY) 2003 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥16,200,000 (Direct Cost: ¥16,200,000)
Fiscal Year 2006: ¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2005: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2004: ¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 2003: ¥5,400,000 (Direct Cost: ¥5,400,000)
Keywordsgravitational 3・body motion / totally conservative integrator / Kepler motion / Langrage's equilateral triangle / energy preserving difference solution / numerical integrator / symplectic integrator method / 数値積分法 / ステッケル系 / 重力2中心問題 / Kepler運動 / 保存量 / 差分スキーム
Research Abstract

Symplectic integrators and energy preserving difference methods have been widely used for Hamiltonian dynamical systems. However, since such numerical integrators do not preserve all of the conserved quantities, their behavior may be rather different from the trajectory of Hamiltonian systems. Indeed, these integrators can not describe a long-time behavior of the gravitational 2-body motion of Kepler. The purpose of the research project is to develop a new numerical integrator named TCI, totally conservative integrator, which preserving all of the conserved quantities of Hamiltonian systems. It was shown in a paper by Minesaki and Nakamura that a long-time behavior of the Kepler motion is completely preserved by the TCI.
In 2006, the last year of the project, Minesaki and Inoue developed a new integrator which preserving all the conserved quantities of the gravitational 3-body motion. Since the general 3-body motion is a chaotic dynamical system, a candidate of such an integrator is formulated for the case of Langrage's equilateral triangle solution on a plain. The basic design of the integrator is to divide the equations of motion into 2-body parts and interaction parts of 3-body and then discretize them, individually. A key idea is a use of a gap in a time variable which appears in the discrete 2-body motion to keep the sum of relative coordinates zero. Consequently, it is shown that the resulting numerical integrator preserves Langrage's equilateral triangle solution exactly. Such a remarkable property is viewed in numerical simulation except for a round-off error in computer. The new integrator is shown to be superior than Stormer-Verlet's symplectic integrator for 3-body motion. It is also verified that the new integrator behaves well for the letter "8" solution of the 3-body motion and the corresponding energy is kept constant for a long period.

Report

(5 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (36 results)

All 2007 2006 2005 2004 Other

All Journal Article (26 results) Book (1 results) Patent(Industrial Property Rights) (3 results) Publications (6 results)

  • [Journal Article] New type of soliton equations2007

    • Author(s)
      Y.Ohta, R.Hirota
    • Journal Title

      J. Phys. Soc. Japan 76巻2号

    • NAID

      110006203508

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Discretization of the new type of soliton equations2007

    • Author(s)
      R.Hirota, Y.Ohta
    • Journal Title

      J. Phys. Soc. Japan 76巻3号

    • NAID

      110006240193

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] New type of soliton equations2007

    • Author(s)
      Y.Ohta, R.Hirota
    • Journal Title

      J. Phys. Soc. Japan Vol.76,No.2

    • NAID

      110006203508

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Discretization of the new type of soliton equations2007

    • Author(s)
      R.Hirota, Y.Ohta
    • Journal Title

      J. Phys. Soc. Japan Vol.76, No.3

    • NAID

      110006240193

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] New Type of Soliton Equations2007

    • Author(s)
      Y.Ohta, R.Hirota
    • Journal Title

      J. Phys. Soc. Japan 76巻2号

    • NAID

      110006203508

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Discretization of the New Type of Soliton Equations2007

    • Author(s)
      R.Hirota, Y.Ohta
    • Journal Title

      J. Phys. Soc. Japan 76巻3号

    • NAID

      110006240193

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A numerical integrator for the two-fixed-centres problem conserving all constants of motion2006

    • Author(s)
      T.Inoue, Y.Minesaki
    • Journal Title

      J. Phys. A, Math. Gen. 39巻

      Pages: 9437-9452

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] Determinant structure of non-autonomous Toda-type integrable systems2006

    • Author(s)
      A.Mukaihira, S.Tsujimoto
    • Journal Title

      J. Phys. A, Math. Gen. 39巻

      Pages: 779-788

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Accurate computation of singular values in terms of shifted integrable schemes2006

    • Author(s)
      M.Iwasaki, Y.Nakamura
    • Journal Title

      Japan J. Indust. Appl. Math. 23巻

      Pages: 239-259

    • NAID

      10018823498

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] New numerical integrator for Stackel system which conserves all constants of motion2006

    • Author(s)
      Y.Minesaki, Y.Nakamura
    • Journal Title

      J. Phys. A, Math. Gen. 39巻

      Pages: 9453-9476

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] A numerical integrator for the two-fixed-centres problem conserving all constants of motion2006

    • Author(s)
      T.Inoue, Y.Minesaki
    • Journal Title

      J. Phys. A, Math. Gen. Vol.39

      Pages: 9437-9452

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Determinant structure of non-autonomous Toda-type integrable systems2006

    • Author(s)
      A.Mukaihira, S.Tsujimoto
    • Journal Title

      J. Phys. A, Math. Gen. Vol.39

      Pages: 779-788

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Accurate computation of singular values in terms of shifted integrable schemes2006

    • Author(s)
      M.Iwasaki, Y.Nakamura
    • Journal Title

      Japan J. Indust. Appl. Math. Vol.23

      Pages: 239-259

    • NAID

      10018823498

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] New numerical integrator for Stackel system which conserves all constants of motion2006

    • Author(s)
      Y.Minesaki, Y.Nakamura
    • Journal Title

      J. Phys. A, Math. Gen. Vol.39

      Pages: 9453-9476

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Determinant structure of non-autonomous loda-type integrable systems2006

    • Author(s)
      A.Mukaihira, S.Tsujimoto
    • Journal Title

      J. Phys. A, Math. Gen. 39巻

      Pages: 779-788

    • Related Report
      2006 Annual Research Report
  • [Journal Article] 高精度特異値計算ルーチンの開発とその性能評価2005

    • Author(s)
      高田雅美, 岩崎雅史, 木村欣司, 中村佳正
    • Journal Title

      情報処理学会論文誌 46巻,No.SIG12

      Pages: 299-311

    • NAID

      110002769846

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 特異値計算アルゴリズムdLVの基本性質について2005

    • Author(s)
      岩崎雅史, 中村佳正
    • Journal Title

      日本応用数理学会論文誌 15巻,No.3

      Pages: 287-306

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 離散戸田方程式を用いた大規模疎行列の連立一次方程式,行列式,固有多項式の計算法2005

    • Author(s)
      木村欣司, 野呂正行, 辻本諭, 中村佳正
    • Journal Title

      日本応用数理学会論文誌 15巻,No.3

      Pages: 307-322

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 実対称3重対角行列の高精度ツイスト分解とその特異値分解への応用2005

    • Author(s)
      岩崎雅史, 阪野真也, 中村佳正
    • Journal Title

      日本応用数理学会論文誌 15巻,No.3

      Pages: 461-481

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Gram-Type Pfaffian Solution to the Coupled Discrete KP Equation2005

    • Author(s)
      Chun-Xia Li, Y.Ohta
    • Journal Title

      J.Phys.A 38巻,No.5

      Pages: 1089-1095

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Some Aspects of the Toda Molecule2005

    • Author(s)
      M.Nishizawa, Y.Ohta, S.Tsujimoto
    • Journal Title

      Glasgow Math.J. 47A巻

      Pages: 169-176

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A new conservative numerical integration algorithm for the three-dimensional Kepler motion2004

    • Author(s)
      Y.Minisaki, Y.Nakamura
    • Journal Title

      Phys.Lett.A Vol.324,No.3-4

      Pages: 282-292

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A conservative numerical integration algorithm for the integrable Henon-Heiles system2004

    • Author(s)
      Y.Minesaki, Y.Nakamura
    • Journal Title

      Proceedings of Institute of Mathematics of NAS of Ukraine, Eds A.G.Nikitin et al, Kyiv, Institute of Mathematics Part I

      Pages: 444-449

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Hypergeometric Solutions to the $q$-Painlev′e Equations2004

    • Author(s)
      K.Kajiwara, T.Masuda, M.Noumi, Y.Ohta, Y.Yamada
    • Journal Title

      Int.Math.Res.Note No.47

      Pages: 2497-2521

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Special Solutions of Discrete Integrable Systems2004

    • Author(s)
      Y.Ohta
    • Journal Title

      Discrete Integrable Systems, Lecture Notes in Phys. (Springer-Verlag, Berlin) Vol.644

      Pages: 57-83

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Determinant structure of RI type discrete integrable system2004

    • Author(s)
      A.Mukaihira, S.Tsujimoto
    • Journal Title

      J.Phys.A : Math.Gen. Vol.37,No.16

      Pages: 4557-4565

    • Related Report
      2004 Annual Research Report
  • [Book] 可積分系の機能数理2006

    • Author(s)
      中村佳正
    • Total Pages
      224
    • Publisher
      共立出版
    • Related Report
      2005 Annual Research Report
  • [Patent(Industrial Property Rights)] 特異値分解装置,及び特異値分解方法2006

    • Inventor(s)
      中村佳正ほか4名
    • Industrial Property Rights Holder
      国立大学法人京都大学100%
    • Filing Date
      2006-09-21
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Patent(Industrial Property Rights)] 特異値分解装置,及び特異値分解方法2006

    • Inventor(s)
      中村佳正ほか4名
    • Industrial Property Rights Holder
      国立大学法人京都大学100%
    • Filing Date
      2006-09-21
    • Related Report
      2006 Annual Research Report
  • [Patent(Industrial Property Rights)] 特異値分解装置、及び特異値分解方法2005

    • Inventor(s)
      中村 佳正, 誉田 太朗, 岩崎 雅史, 阪野 真也, 高田 雅美
    • Industrial Property Rights Holder
      京都大学
    • Filing Date
      2005-12-05
    • Related Report
      2005 Annual Research Report
  • [Publications] M.Iwasaki, Y.Nakamura: "An application of the discrete Lotka-Volterra system with variable step-size to singular value computation"Inverse Problems. Vol.20. 553-563 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Minesaki, Y.Nakamura: "A new conservative numerical integration algorithm for the three-dimensional Kepler motion based on the Kustaanheimo-Stiefel regularization theory"Phys.Lett.A. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Minesaki, Y.Nakamura: "A conservative numerical integration algorithm for integrable Henon-Heiles system"Proceedings of The International Conference "Symmetry in Nonlinear Mathematical Physics", Kiev,2003. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Nakamura, A.Zhedanov: "Toda chain, Sheffer class of orthogonal polynomials and combinatorial numbers"Proceedings of the International Conference "Symmetry in Nonlinear Mathematical Physics", Kiev,2003. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Mukaihira, S.Tsujimoto: "Determinant structure of R_1 type discrete integrable system"J.Phys.A : Math.Gen.. (To appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] B.Grammaticos, A.Ramani, Y.Ohta: "A Unified Description of the Asymmetric $q$-P$_{\rm V}$ and $d$-P$_{\rm IV}$ Equations and their Schlesinger Transformations"J.Nonlinear Math.Phys.. Vol.10. 215-228 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi