• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries

Research Project

Project/Area Number 15540213
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTokai University

Principal Investigator

YAMAGUCHI Masaru  Tokai University, School of Science, Professor, 理学部, 教授 (10056252)

Co-Investigator(Kenkyū-buntansha) AKAMATSU Toyohiro  Tokai University, School of Science, Professor, 理学部, 教授 (00112772)
ITOH Tatsuo  Tokai University, School of Science, Professor, 理学部, 教授 (20151516)
TANAKA Minoru  Tokai University, School of Science, Professor, 理学部, 教授 (10112773)
MATSUYAMA Tokio  Tokai University, School of Science, Professor, 理学部, 教授 (70249712)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordsnonlinear wave equation / Klein-Gordon equation / Suspended string equation / periodic solution / almost periodic solution / Diophantine approximation / cusp / Diophantine不等式 / 重い振動弦の方程式 / 重みをもつSobolev型空間 / Schauderの不動点定理 / 自由振動 / Diophantine Condition / Suspended String / 連分数 / 球対称領域 / Bassel 関数 / 吊り下げられた弦の方程式
Research Abstract

1) Let the space dimension be 1 to 5. Consider nonlinear sphere-symmetric autonomous wave equations in ball. We showed that the equations have infinitely many time-periodic solutions. In the proof we used the Diophantine inequalities on the eigenvalues of Laplacian and the periods. To this end we studied in detail numerical properties of the zero points of the Bessel functions, using the asymptotic expansions of the zero points.
2) We considered IBVP for linear equations of heavy suspended string. Assume that time-quasiperiodic force works to the string. We assume the general Diophantine conditions on the eigenvalues of the string operator and the quasi perios Then we completely made clear the strunture of almost periodic structure of the solutions of IBVP. To show this statement, we defined well-matched function spaces, solved the eigenfunction problem in these function spaces and constructed the spectral theory.
3) We considered BVP for nonlinear sphere-symmetric wave equations in ball with periodically moving boundaries. Then we showed the existence of periodic solutions of the BVP.
4) The following theorem on the geodesics on manifolds is proved by M.Tanaka.
Theorem : Let M be a real analytic Riemaniann manifold homeomorphic to a 2-sphere. If the Gaussian curvature of M is positive, then the conjugate locus of each point consists of a single point or has at least 4 cusps.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (24 results)

All 2006 2005 2004 2003 Other

All Journal Article (22 results) Publications (2 results)

  • [Journal Article] A bound on the number of endpoints of the cut locus2006

    • Author(s)
      M.Tanaka
    • Journal Title

      LMS Journal of Computation and Mathematics Vol.9

      Pages: 21-39

    • Related Report
      2005 Annual Research Report
  • [Journal Article] One dimensional wave equations in domain with quasiperiodically moving boundaries and quasiperiodic dynamical systems2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathematics of Kyoto University Vol.45

      Pages: 57-97

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Almost periodic oscillations of suspended string under quasiperiodic linear force2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathematical Analysis and Applications Vol.303

      Pages: 643-660

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] One-dimensional wave equations in domain with quasiperiodically moving boundaries and quasiperiodic dynamical systems2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathematics of Kyoto University vol 45-1

      Pages: 57-97

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Almost periodic oscillations of suspended string under quasiperiodic linearforce2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathematical Analysis and Applications vol 303-2

      Pages: 643-660

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] One-dimensional wave equations in domain with quasiperiodically moving boundaries and quasiperiodic dynamical systems2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathemitics of Kyoto University Vol.45, No.1

      Pages: 57-97

    • Related Report
      2005 Annual Research Report
  • [Journal Article] The cut loci of an torus of revolution2005

    • Author(s)
      M.Tanaka
    • Journal Title

      Asian Journal of Mathematics Vol.9, NO.1

      Pages: 103-120

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Almost periodic oscillations of suspended string under quasiperiodic linear force2005

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Mathematical Analysis and Applications 303

      Pages: 643-660

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Free and forced vibrations of nonlinear wave equations in ball2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Differential Equations Vol.203

      Pages: 255-291

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] String equation and one dimensional quasiperiodic dynamical systems2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      数理解析研究所講究録 No.1377

      Pages: 1-30

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Free and forced vibration of nonlinear wave Equations in ball2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Differential Equations vol 203-3

      Pages: 255-291

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] String equation and one dimensional quasiperiodic dynamical systems2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Kokyuroku, Research Institute of Mathematical Sciences no.1377

      Pages: 1-30

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Periodic solutions of nonlinear 3D WE in sphere-symmetric domain with periodically oscillating boundaries2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Progress in Analysis (Proc.of ISSAC Congress)

      Pages: 947-954

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Free and forced vibrations of nonlinear wave equations in ball2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Journal of Differential Equations 203

      Pages: 255-291

    • Related Report
      2004 Annual Research Report
  • [Journal Article] String equation and one dimensional quasiperiodic dynamical systems2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      数理解析研究所講究録 1377

      Pages: 1-30

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Infinitely many periodic solutions of one-dimensional Klein Gordon equations2004

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Mathematical Sciences and Applications 20

      Pages: 340-351

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Scattering states for the nonlinear wave equation with small data2004

    • Author(s)
      T.Matsuyama, M.Tanaka
    • Journal Title

      Advances in Differential Equations 9

      Pages: 721-744

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Periodic solutions of nonlinear 3D WE in sphere symmetric domain with periodically oscillating boundaries2003

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Progress in Analysis (Proc. of ISAAC Congress)

      Pages: 947-954

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Infinitely many periodic solutions of one-dimensional Klein-Gordon equations2003

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Mathematical Sciences and Applications Vol.20

      Pages: 340-351

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Infinitely many periodic solutions of one-dimensional Klein-Gordon equations2003

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Mathematical Sciences and Applications 20

      Pages: 340-351

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Jacobi's last geometric statement extends to a wider class of Liouville surfaces

    • Author(s)
      M.Tanaka
    • Journal Title

      Mathematics of Computation (印刷中)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] One dimensional wave equations in domain with quasiperiodically moving boundaries and quasiperiodic dynamical systems

    • Author(s)
      M.Yamaguchi
    • Journal Title

      Jounal of Mathematics of Kyoto University (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Publications] M.Yamaguchi: "Infinitely many periodic solutions of one-dimensional Klein Gordon equations"Mathematical Sciences and Applications. (発表予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Yamaguchi: "String equation and one-dimensional quasiperiodic dynamical systems"京都大学数理解析研究所講究録. (発表予定).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi