巡回性・分解性を持つブロック計画の存在問題とその体系化及び応用に関する研究
Project/Area Number |
15700233
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Statistical science
|
Research Institution | Gifu University |
Principal Investigator |
三嶋 美和子 岐阜大学, 総合情報メディアセンター, 助教授 (00283284)
|
Project Period (FY) |
2003 – 2004
|
Project Status |
Completed (Fiscal Year 2004)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | BIB design with nested rows and columns / difference packing / graph decomposition / nearest neighbor correlation structure / orthogonal array / rectangular design / resolvable design / universally optimum / balanced nested design / dicyclic group / 1-rotational / Steiner triple system |
Research Abstract |
1.BIB designやgroup divisible design, L_2 designの一般形でもあるrectangular designについて,その巡回的構成法,および,存在についてsymmetric balanced nested designを用いて示した.この結果について投稿した論文は既にアクセプトされ,掲載予定である. 2.更にrectangular designの中でもブロックサイズ3の場合について(rectangular triple systems)Auburn University(アメリカ)のDean Hoffman教授の協力を得て,グラフ分解の手法を使って場合分けをしながら存在証明を行い,これまでのところ2/3のケースについて証明が完了した.この研究については今後も継続予定である. 3.行列型の巣構造を持つBIB designでcompletely balancedと呼ばれる性質を持つものについての構成法には神保・菱田による結果が既にあるが,これには冗長部分があり,本研究において冗長部分を解消し,更に一般化した構成法を示した.また,completely balancedな性質を持たないデザインが得られる構成法についてもUddin and Morganの構成法を一般化する形で示すことができた.この結果について投稿した論文は既にアクセプトされ,掲載予定である. 4.ブロック計画(特に直交配列)の応用として,誤差に相関がある場合の最適な多水準直交実験について,その構成法と最適性を示した. 5.ブロック計画の応用について検討するため,企業による暗号に関するセミナー等に定期的に参加し,その利用法を継続して模索中である.
|
Report
(2 results)
Research Products
(4 results)