Project/Area Number |
15740016
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Kinki University (2005) Shimane University (2003-2004) |
Principal Investigator |
尾崎 学 近畿大学, 理工学部, 助教授 (80287961)
|
Project Period (FY) |
2003 – 2005
|
Project Status |
Completed (Fiscal Year 2005)
|
Budget Amount *help |
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
|
Keywords | 岩澤理論 / 非アーベル数論 / 不分岐拡大 / ガロワ群 / 非アーベル拡大 / 最大不分岐p-拡大 / 非アーベル拡大の数論 / 代数的整数論 |
Research Abstract |
本年度得られた最大の研究成果は、μ-不変量が正であるようなある種のZ_p-拡大に対して、その各layer上の羃零類2の最大不分岐p-拡大の次数を与える非アーベル岩澤公式を与えたことである。 従来の岩澤理論では岩澤代数Λ上有限生成な加群のみが考察されてきたが、本研究主題の非アーベル岩澤理論に於いては、μ-不変量が正の場合にはΛ上無限生成の岩澤加群が自然に現れる。従って、上述の公式を示すにはこの無限生成Λ加群を考察する必要があるため、非常は困難を伴う。そのため従来はμ-不変量が正の場合にはλ-不変量が0であるような非常に特殊な形の岩澤加群を持つZ_p-拡大に対してのみ公式が与えられていた。今回の成果に於いては、λ-不変量が正である場合も含む、より広いクラスのZ_p-拡大に対して公式が与えられ、その手法も一般の場合を解決する道を拓くものと思われるので、今後の研究成果にも期待が持てる。また、従来の公式に現れていた新しい不変量であるκ-不変量の群論的な特徴付けも今回の成果でより鮮明になった。
|
Report
(3 results)
Research Products
(4 results)