Interface engineering of functional oxide heterostructures
Project/Area Number |
15H02022
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | Tohoku University |
Principal Investigator |
|
Research Collaborator |
SHIBATA naoya
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥42,640,000 (Direct Cost: ¥32,800,000、Indirect Cost: ¥9,840,000)
Fiscal Year 2018: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2017: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2016: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2015: ¥25,090,000 (Direct Cost: ¥19,300,000、Indirect Cost: ¥5,790,000)
|
Keywords | 薄膜界面物性 / 酸化物 / 誘電性 / 導電性 / 電界効果 / 表面・界面物性 / 結晶工学 / 誘電体物性 / 半導体物性 |
Outline of Final Research Achievements |
In this research project, we aim to develop the functional interface based on oxide heterostructures especially for superior electrical conduction. One research target is a perovskite BaSnO3 heterostructure. Interface engineering with (Sr,Ba)SnO3/BaSnO3 improves electrical conduction and performance of field-effect operation at the interface. Other target is a LiNbO3-type stannates. LiNbO3-type ASnO3 thin films (A = Mg, Mn, Zn) are firstly synthesized by pulsed-laser deposition or molecular-beam epitaxy technique. By applying these films to the channel in field-effect transistors (FET), electrical conduction is well controlled electrostatically. Moreover, the threshold voltage in the FET operation depends crystalline direction, demonstrating the formation of polar interface based on the LiNbO3 structure. We expect that the interface engineering in this study corroborates a new functionality of electrical conduction combining with polarization at the interfaces.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、昨今用途の拡大している透明導電膜の候補材料としてのBaSnO3薄膜の可能性を探究し、希少元素を含むITOの代替えとして活用の期待できることを示したことが意義深い。また、強誘電性を示すLiNbO3型酸化物薄膜の開発は、Pbフリーの強誘電体探索に対して有用な指針を与えた。これらの観点に加えて、新たな酸化物界面制御技術の開発を進めたことは、多様な酸化物の特性を活用した新たな薄膜素子の開発を切り拓く重要な基盤技術に位置づけられる。特に、機能としての界面伝導性や誘電性の活用に対して、元素戦略的な視点からも有効な成果であり、社会的にも貢献しうる成果と言える。
|
Report
(5 results)
Research Products
(38 results)