• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Control System Design of Neuro-controller Using Genetic Algorithms for Non-holonomic Systems

Research Project

Project/Area Number 16500114
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Perception information processing/Intelligent robotics
Research InstitutionUniversity of the Ryukyus

Principal Investigator

KINJO Hiroshi  University of the Ryukyus, Department of Engineering, Associate Professor, 工学部, 助教授 (50211206)

Co-Investigator(Kenkyū-buntansha) YAMAMOTO Tetsuhiko  University of the Ryukyus, Department of Engineering, Professor, 工学部, 教授 (20045008)
NAKAZONO Kunihiko  University of the Ryukyus, Department of Engineering, Research Assistant, 工学部, 助手 (80284959)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2004: ¥600,000 (Direct Cost: ¥600,000)
KeywordsLearning machine / Mechanical dynamics and control / Intelligent control / Neural networks / Non-holonomic systems / Genetic algorithms / GA学習法 / ニューロ制御器 / 制御系設計法
Research Abstract

The main object of this research project is to construct control system for non-holonomic systems using neurocontroller (NC) based on a genetic algorithm (GA). One method for the nonholonomic system controller design is the time-state control form that utilizes a chained form conversion. The chained forms are powerful and useful for designing the nonholonomic control system. However, the time-state control form has some limitations in the controllable ranges due to the conversion. In this research, we propose a design method of a state feedback controller for a nonholonomic system using an NC without chained forms. The NC is trained by a genetic algorithm. In the controller design, the abilities of pattern recognition and generalization of the neural network are utilized. In the GA process, NCs are evaluated on the basis of control performance in which the squared errors that result from the control simulations starting from all the initial states are calculated. Based on the control performance, NCs are evolved through the GA processes. Results of simulations show that the NCs trained using a GA exhibit good control performance of some example objects of the nonholonomic systems. One of the control strategies of the NC resembles that of time-state control form. The proposed method has no limitations in the controllable ranges in the initial states.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (15 results)

All 2006 2005 2004

All Journal Article (15 results)

  • [Journal Article] GA学習によるニューロ制御器を用いた非ホロノミック系の制御系設計法2006

    • Author(s)
      荻野法和
    • Journal Title

      琉球大学工学部紀要 67

      Pages: 1-4

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] 可変確率分布を用いた実数値GAの交叉法2006

    • Author(s)
      中西弘樹
    • Journal Title

      琉球大学工学部紀要 67

      Pages: 5-8

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Enhanced performance for multi-variable optimization problems by use of GAs with recessive gene structure2006

    • Author(s)
      Endusa Muhando
    • Journal Title

      Artificial Life and Robotics 10(印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] 偏りのある確率分布関数と突然変異を用いた交叉による実数値GAの探索性能の改良2006

    • Author(s)
      金城寛
    • Journal Title

      計測自動制御学会論文集 42・6(印刷中)

    • NAID

      10017626241

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Design of non-holonomic control system using neurocontroller evolved by genetic algorithm training2006

    • Author(s)
      Norikazu Ogino
    • Journal Title

      Bulletin of the Faculty of Engineering, University of the Ryukyus Vol.67

      Pages: 1-4

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Crossover of Real-coded genetic algorithms using variable distribution function2006

    • Author(s)
      Hiroki Nakanishi
    • Journal Title

      Bulletin of the Faculty of Engineering, University of the Ryukyus Vol.67

      Pages: 5-8

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Enhanced performance multivariable optimization problems by use of genetic algorithms with recessive gene structure2006

    • Author(s)
      Endusa Muhando
    • Journal Title

      Artificial Life and Robotics Vol.10(printing)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Improvement of searching performance of real-coded genetic algorithm by use of crossover with biased probability distribution function and mutation2006

    • Author(s)
      Hiroshi Kinjo
    • Journal Title

      Transactions of the Society of Instrument and Control Engineers Vol.42,No.6(printing)

    • NAID

      10017626241

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] 可変確率分布を用いた実数値GAの交叉方法2006

    • Author(s)
      中西弘樹
    • Journal Title

      琉球大学工学部紀要 67

      Pages: 5-8

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Enhanced Performance for Multi-variable Optimization Problems by Use of GAs with Recessive Gene Structure2006

    • Author(s)
      Endusa Muhando
    • Journal Title

      Artificial Life and Robotics 10(印刷中)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 劣性遺伝構造を有するニューロ制御器を用いた段階的GA学習法による多重トレーラの制御系設計法2005

    • Author(s)
      喜友名彩妃
    • Journal Title

      電気学会論文誌C 125・1

      Pages: 29-36

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] Control system design of multitrailer using neurocontrollers with recessive gene structure by step-up Ga training2005

    • Author(s)
      Ayaki Kiyuna
    • Journal Title

      IEEJ Transactions on Electronics, Information and Systems Vol.125,No.1

      Pages: 29-36

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Backward control of multitrailer systems using neurocontroller evolved by genetic algorithm2004

    • Author(s)
      Ayaki Kiyuna
    • Journal Title

      Artificial Life and Robotics 8・1

      Pages: 9-13

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Backward control of multitrailer systems using neurocontroller by evolved genetic algorithm2004

    • Author(s)
      Ayaki Kiyuna
    • Journal Title

      Artificial Life and Robotics Vol.8,No.1

      Pages: 9-13

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Backward control of multitrailer systems using neurocontroller evolved by a genetic algorithm2004

    • Author(s)
      Ayaki Kiyuna
    • Journal Title

      Artificial Life and Robotics 8・1

      Pages: 9-13

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi