• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research for multiplicities and tight closures on singular points of positive characteristic

Research Project

Project/Area Number 16540021
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

YOSHIDA Kenichi  Nagoya University, Graduate School of Mathematics, Assistant Professor, 大学院多元数理科学研究科, 助教授 (80240802)

Co-Investigator(Kenkyū-buntansha) HASHIMOO Mitsuyasu  Magoya University, Graduate School of Mathematics, Assistant Professor, 大学院多元数理科学研究科, 助教授 (10208465)
ITO Yukari  Nagoya University, Graduate School of Mathematics, Lecturer, 大学院多元数理科学研究科, 講師 (70285089)
WATANABE Kei-ichi  Nihon University, Department of Mathematics, College of Humanities and Sciences, Professor, 文理学部, 教授 (10087083)
坂内 健一  名古屋大学, 大学院・多元数理科学研究科, 助手 (90343201)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsHilbert-Kunz multiplicity / multiplicity / tight closure / multiplier ideal / singularity / F-regular / Buchsbaum rings / Stanley・Reisner rings / Buchsbaum ring / multiplicity / tight closure / multiplier ideal / Stanley-Reisner ring / Cohen-Macaulay / F-pure / Alexander duality / lineal resolution / ヒルベルト・クンツ重複度 / フロベニウス写像 / 線型自由分解 / スタンレー・リースナー環 / ブックスバウム環
Research Abstract

1. On Lower bounds for Hilbert-Kunz multiplicities:
We have proved that any unmixed local ring with Hilbert-Kunz multiplicity one is a regular local ring before starting this research. Indeed, this theorem is a generalization of Nagata's classical theorem in positive characteristic. In this research, we considered a problem of finding a lower bound on Hilbert-Kunz multiplicities for non-regular local rings. As a result, we found a conjecture that such a lower bound is attained by quadratic hypersurface, and proved that it is true for local rings of at most dimension 4. The lower bound given by us is interesting in algebraic geometry, but we cannot obtain any sufficient theory. Moreover, the conjecture was proved by Enescu-Shimamoto in the case of complete intersections.
2. Minimal Hilbert-Kunz multiplicity
The notion of minimal Hilbert-Kunz multiplicities was introduced by us to estimate of badness of F-regular local rings. The invariant is a real number in the interval between 0 and 1. Recently, Aberbach etc. proved that a local ring is F-regular if and only if its minimal Hilbert-Kunz multiplicity is positive. We determined the minimal Hilbert-Kunz multiplicities for affine toric singularities and quotient singularities, which are typical F-regular rings.
3. Characterization of Buchsbaum Stanley-Reisner rings with minimal multiplicity.
We studied minimal free resolutions, multiplicities, h-vectors for Buchsbaum Stanley-Reisner rings together with Naoki Terai at Saga University. In particular, we gave a lower bound for multiplicities for those rings, and characterized such rings.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (21 results)

All 2006 2005 2004 Other

All Journal Article (21 results)

  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proc. Amer. Math. Soc. 134

      Pages: 55-65

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Stanley-Reisner rings with large multiplicities are Cohen-Macaulay2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      J. Algebra 301

      Pages: 493-508

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Comm. Algebra 34

      Pages: 2673-2681

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal Multiplicity2006

    • Author(s)
      Naoki Terai, Kenichi Yoshida
    • Journal Title

      Proc. Amer. Math. Soc. 134

      Pages: 55-65

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley・Reisner rings and Cohen-Macaulay covers2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Comm. Algebra 34

      Pages: 2673-2681

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Adjacent integrally closed ideals in 2-dimensional regular local rings2006

    • Author(s)
      Sunsook Noh, Kei-ichi Watanabe
    • Journal Title

      Journal of Algebra 302

      Pages: 156-166

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proceedings of the American Mathematical Society 134

      Pages: 55-65

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Stanley-Reisner rings with large multiplicities are Cohen-Macaulay2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Journal of Algebra 301

      Pages: 156-166

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Communications in Algebra 34

      Pages: 2673-2681

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      N.Terai, K.Yoshida
    • Journal Title

      Proc.Amer.Math.Soc. 134

      Pages: 55-65

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Nagoya Math. J. 177

      Pages: 47-75

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      K.-i.Watanabe, K.Yoshida
    • Journal Title

      Nagoya Math.J. 177

      Pages: 47-75

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A pure subalgebra of a finitely generated is finitely generated2005

    • Author(s)
      M.Hashimoto
    • Journal Title

      Proc.Amer.Math.Soc. 133

      Pages: 2233-2235

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Illinois J. Math. 48

      Pages: 273-294

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] When does the subadditivity theorem for multiplier ideals hold?2004

    • Author(s)
      Shunsuke Takagi, Kei-ichi Watanabe
    • Journal Title

      Trans. Amer. Math. Soc. 356

      Pages: 3951-3961

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      K-i.Watanabe, K.Yoshida
    • Journal Title

      Illinois J.Math. 48

      Pages: 273-294

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Buchsbaum homogeneous algebras with minimal multiplicity

    • Author(s)
      Shiro Goto, Ken-ichi Yoshida
    • Journal Title

      Journal of Pure and Applied Algebra (to appear)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers

    • Author(s)
      N.Terai, K.Yoshida
    • Journal Title

      Comm.Algebra (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Stanley-Reisner rings with large maltiplicities are Cohen-Macaulay

    • Author(s)
      N.Terai, K.Yoshida
    • Journal Title

      J.Algebra (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings

    • Author(s)
      K-i.Watanabe, K.Yoshida
    • Journal Title

      Nagoya Math.J. (to appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity

    • Author(s)
      N.Terai, K.Yoshida
    • Journal Title

      Proc.Amer.Math.Soc. (to appear)

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi