• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Birkohoff theory for non-autonomous differential equations with delay

Research Project

Project/Area Number 16540139
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionChiba University

Principal Investigator

HINO Yoshiyuki  Chiba University, Graduate School of Science, 教授 (70004405)

Co-Investigator(Kenkyū-buntansha) INABA Takashi  Chiba University, Graduate School of Science, Professor (40125901)
ISHIMURA Ryuichi  Chiba University, Graduate School of Science, Professor (10127970)
OKADA Yasunoti  Chiba University, Graduate School of Science, Associate Professor (60224028)
NAITO Toshiki  University of Electronics and Infomatics, 電気通信学部, Professor (60004446)
MURAKAMI Satoru  University of Okayama Science, 理学部, Professor (40123963)
Project Period (FY) 2004 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,810,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2004: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsdynamical system / minimal set / functional differential equation / boundedness / stability / 遅れ型微分方程式 / 非自例的 / 一様漸近安定 / 全安定 / 遅れ / 関数偏微公方程式 / 非自励的 / アトラクター
Research Abstract

There are many methods to discuss nonlinear oscillations for functional differential equations with infinite delay. Dynamical systems are very important for equations with uniqueness property. Another methods are analytic methods. Analytic methods are very difficult, because there are many methods for the case the dimension of phase spaces is infinite or infinite.
In this reports, we consider the only the property of solutions which is called processes. This idea is based by Brown University that is the main place of LaSalle's invariant principle. We have the followings for the above problem: (i) Application to functional differential equations and evolution equations. (ii) Applicaions to partial differential equations. (iii) Construction of general dynamical systems (iv) Construction of the best topology for dynamical systems.
Thus we could discuss many results.

Report

(5 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (19 results)

All 2008 2007 2005 2004 Other

All Journal Article (17 results) (of which Peer Reviewed: 6 results) Presentation (2 results)

  • [Journal Article] Endomorphisms of the space of higher order entire functions and infinite order differential operators2007

    • Author(s)
      R. Ishimura
    • Journal Title

      Kyusyu J. Math. 89

      Pages: 83-94

    • NAID

      130000063184

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Invariant manifolds for abstract functional differential equations and related Volterra difference equations in a Banach space2007

    • Author(s)
      S. Murakami, Y. Nagabuchi
    • Journal Title

      Funkcial Ekvacioj 50

      Pages: 133-170

    • NAID

      130000140684

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Characterization of positive linear Volterra equations2007

    • Author(s)
      T. Naito, J. S. Shin, S. Murakami, P. H. Ngoc
    • Journal Title

      Integral Equations and Operator Theory 58

      Pages: 255-272

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Endomorphisms of the Space of Higher Order Entire Functions and Infinite Order Differential Operators2007

    • Author(s)
      R. Ishimura
    • Journal Title

      Kyushu J. Math. 61 No. 1

      Pages: 83-94

    • NAID

      130000063184

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Invariant manifolds for abstract functional Differential equations and Volterra equations in a Banach space2007

    • Author(s)
      S. Murakami, Y. Nagabuchi
    • Journal Title

      Funkcial. Ekvacioj vol. 50

      Pages: 133-170

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Characterization of positive linear Volterra intgro-differential systems2007

    • Author(s)
      T. Naito, J. S, Shin, S. Murakami and P. H Anh Ngoc
    • Journal Title

      Integral Equations and Operator Theory vol. 58

      Pages: 255-272

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Endomorphisms of the space of higher order entire functions and infinit order differential operators2007

    • Author(s)
      R.Ishimura
    • Journal Title

      Kyusyu J.Math 89

      Pages: 83-94

    • NAID

      130000063184

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Invariant manifolds for abstract functional differential equations and related Volterra difference equations in a Banach space2007

    • Author(s)
      S.Murakami, Y.Nagabuchi
    • Journal Title

      Funkcial Ekvacioj 50

      Pages: 133-170

    • NAID

      130000140684

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Characterization of positive linear Volterra equations2007

    • Author(s)
      T.Naito, J.S.Shin, S.MurakaImi, P. H.Ngoc
    • Journal Title

      Integral Equations and Operator Theory 58

      Pages: 255-272

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Invariant manifolds for abstract functional differential equations and related volterra difference equations in a Banach space2007

    • Author(s)
      S.Murakami, Y.Nagabuchi
    • Journal Title

      Funkcialaj Ekavioj 50

      Pages: 133-170

    • NAID

      130000140684

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Stability properties of linear Volterra integrodifferential equations in a Banach space2005

    • Author(s)
      Y.Hino, S.Murakami
    • Journal Title

      Funkcialaj Ekavioj 48.3

      Pages: 367-392

    • NAID

      130000141321

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A characterization of solutions for linear differential equations with periodic forcing functions2005

    • Author(s)
      J.Kato, T.Naito, J.S.Shin
    • Journal Title

      J.Difference equ.Appl. 11.1

      Pages: 1-19

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Stability properties of linear Volterra integrodifferential equations in a Banach space2005

    • Author(s)
      Y.Hino, S.Murakami
    • Journal Title

      Funkcialaj Ekvacioj 48

      Pages: 23-23

    • NAID

      130000141321

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A Characterization of solutions in linear differential equations with periodic forcing functions2005

    • Author(s)
      J.Kato, T.Naito, J.S.Shin
    • Journal Title

      J.Difference equ.Appl. 11.1

      Pages: 1-19

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Volterra difference equations on a Banach space and abstract differential equations with piecewise continuous delays2004

    • Author(s)
      T.Furumochi, S.Murakami, Y.Nagabuchi
    • Journal Title

      Japan.J.Math. 30.2

      Pages: 387-412

    • NAID

      10014334745

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Characterization of linear integral equations with nonnegative kernels

    • Author(s)
      T.Naito, J.S.Shin, S.Murakami, P.H.A.Ngoc
    • Journal Title

      J. Math. Anal. Appl. To appear

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Transformations de Fourier-Sato et op'erateurs pseudo-diff'erentiels non-locaux,

    • Author(s)
      R.Ishimura
    • Journal Title

      Kyushu J.Math. (To appear)

    • Related Report
      2005 Annual Research Report
  • [Presentation] ある線形微分方程式の解の大域的連続性2008

    • Author(s)
      申正善、内藤敏機
    • Organizer
      微分方程式の定性的理論ワークショップ
    • Place of Presentation
      徳島大学
    • Year and Date
      2008-03-02
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] Global continuity of solutions of some linear Differential equations2008

    • Author(s)
      J. S. Shin, T. Naito
    • Organizer
      Workshop of stability theory of differential equations
    • Place of Presentation
      Tokushima Univ.
    • Year and Date
      2008-03-02
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi