ウェーブレット変換の関数空間,偏微分方程式への応用
Project/Area Number |
16740076
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Basic analysis
|
Research Institution | Nara Women's University |
Principal Investigator |
森藤 紳哉 奈良女子大学, 理学部, 助教授 (30273832)
|
Project Period (FY) |
2004 – 2006
|
Project Status |
Completed (Fiscal Year 2006)
|
Budget Amount *help |
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | フーリエ解析 / 函数空間 / ウェーブレット / 超可微分函数 / ルジャンドル変換 / 作用素 / 対数的積分 / 不確定性原理 / Fourier解析 / Sobolev / 局所解析 / 補間空間論 / 不等式 / 領域 / ウェーブレット空間 / F.B.I.空間 / 超局所化 / 作用素解析 / 補間的空間論 / 重み函数 |
Research Abstract |
当研究の目的は主に,端的に述べるならば,フーリエ解析的に定義される函数空間の様々な性質を明らかにし,その応用を展開することであった.本研究期間中の当初2年間にわたるF.B.I.変換とウェーブレット変換を用いた解析,すなわち相空間上の解析が今年度(=最終年度)にも充分に継承された.まず,重みつき函数空間にも関係する超可微分函数の範疇で,メイエ型のウェーブレットの減衰度を考察することができたのは望外の成果であった.超可微分函数,Paley-Wienerの定理,ルジャンドル変換の具体的計算などをKomatsu, Mandelbrojt, Hormander, Ehrenpreis達に従う形で当研究課題のひとつであるウェーブレット研究へと繋げることができたのである.この研究は,例えばKoosisの対数的積分やHavin-Jorickeの不確定性原理にも並行する数学であり,今後の展開も期待できる.次いで,ウェーブレット変換に対応するCalderon-Toeplitz作用素についての考察をBoutet de Monvel-Guilleminに従って行うこともできた.さらに研究実施計画にも述べた形で最新の図書の購入及びそれらをトータルに用いた研究の充実も計られた.また,国内外の研究者達との対話,特にイェーナ(ドイツ)の数学者H.Triebelとの交流も実現した.彼地の函数空間セミナーでは先述の超可微分函数とウェーブレットに関する研究を紹介することもできた.そして我々の減衰度評価が定量的であったことに対して「定性的なものにしてはどうか」なる質問も受け(11月〜12月),この問に答えた研究もある.補間空間論との関連で行ってきたOrlicz空間の研究も有効たり得るとの示唆も受けた.一昨年度,本研究者が彼地に持ち込んだBesov空間の2-microlocal版の新たな展開が理論物理等との関連において見られるかもしれないことも分かった.以上で本研究課題の概要報告を終えたいと思います.
|
Report
(3 results)
Research Products
(4 results)