• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Estimating the factor structure in multiple matrices

Research Project

Project/Area Number 16H02868
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionKyoto University

Principal Investigator

Mamitsuka Hiroshi  京都大学, 化学研究所, 教授 (00346107)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥16,120,000 (Direct Cost: ¥12,400,000、Indirect Cost: ¥3,720,000)
Fiscal Year 2018: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2017: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2016: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Keywords機械学習 / 行列分解 / 協調行列分解 / データマイニング / 知識発見とデータマイニング
Outline of Final Research Achievements

The objective of research is to present a generalized framework for the input of multiple matrices sharing dimensions and efficient solutions under this framework. We show two example results among our various results obtained during our research period:
1. For the input of a tensor and a matrix which share one dimension, we define a new norm and propose an efficient learning algorithm to estimate the norm. We analyze the property of the norm and empirically show the performance advantage of our norm and algorithm using both synthetic and real-world datasets. The results were summarized into a publication appeared in Neural Computation and also a paper appeared in NeurIPS, one of the top machine learning conferences.
2. We develop an efficient, scalable probabilistic-model based approach for the input of multiple matrices sharing dimensions. This result was published as a paper appeared in AAAI, one of the top artificial intelligence conferences.

Academic Significance and Societal Importance of the Research Achievements

次元を共有する複数の行列は、例えば、EC (electronic commerce) サイトの顧客(ユーザ)と商品(アイテム)のデータや、患者に対する薬の投与データで見受けられる。一般的な設定である。これらのデータに対する効率的・スケーラブルな機械学習手法は、将来的に多くの分野で利用される可能性があり、意義が大きいと考えられる。

Report

(4 results)
  • 2019 Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (40 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (25 results) (of which Int'l Joint Research: 14 results,  Peer Reviewed: 22 results,  Open Access: 24 results,  Acknowledgement Compliant: 4 results) Presentation (8 results) (of which Int'l Joint Research: 8 results) Book (3 results) Remarks (2 results)

  • [Int'l Joint Research] Fudan University(中国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Aalto University(フィンランド)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Scaled Coupled Norms and Coupled Higher-Order Tensor Completion2020

    • Author(s)
      Wimalawarne Kishan、Yamada Makoto、Mamitsuka Hiroshi
    • Journal Title

      Neural Computation

      Volume: 32 Issue: 2 Pages: 447-484

    • DOI

      10.1162/neco_a_01254

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Scalable Probabilistic Matrix Factorization with Graph-Based Priors.2020

    • Author(s)
      Strahl, J., Peltonen, J., Mamitsuka, H. and Kaski, S.
    • Journal Title

      Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020)

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] HPOAnnotator: improving large-scale prediction of HPO annotations by low-rank approximation with HPO semantic similarities and multiple PPI networks2019

    • Author(s)
      Gao Junning、Liu Lizhi、Yao Shuwei、Huang Xiaodi、Mamitsuka Hiroshi、Zhu Shanfeng
    • Journal Title

      BMC Medical Genomics

      Volume: 12 Issue: S10 Pages: 187-187

    • DOI

      10.1186/s12920-019-0625-1

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Modelling G×E with historical weather information improves genomic prediction in new environments2019

    • Author(s)
      Gillberg Jussi、Marttinen Pekka、Mamitsuka Hiroshi、Kaski Samuel
    • Journal Title

      Bioinformatics

      Volume: 35 Issue: 20 Pages: 4045-4052

    • DOI

      10.1093/bioinformatics/btz197

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Fast and Robust Multi-View Multi-Task Learning via Group Sparsity2019

    • Author(s)
      Sun Lu、Nguyen Canh Hao、Mamitsuka Hiroshi
    • Journal Title

      Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019)

      Volume: - Pages: 3499-3505

    • DOI

      10.24963/ijcai.2019/485

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multiplicative Sparse Feature Decomposition for Efficient Multi-View Multi-Task Learning2019

    • Author(s)
      Sun Lu、Nguyen Canh Hao、Mamitsuka Hiroshi
    • Journal Title

      Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019)

      Volume: - Pages: 3506-3512

    • DOI

      10.24963/ijcai.2019/486

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches2019

    • Author(s)
      Guvenq Paltun Betel、Mamitsuka Hiroshi、Kaski Samuel
    • Journal Title

      Briefings in Bioinformatics

      Volume: - Issue: 1 Pages: 346-359

    • DOI

      10.1093/bib/bbz153

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Factor Analysis on a Graph.2018

    • Author(s)
      Karasuyama, M. and Mamitsuka, H.
    • Journal Title

      Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018)

      Volume: - Pages: 1117-1126

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data2018

    • Author(s)
      Yamada Makoto、Tang Jiliang、Lugo-Martinez Jose、Hodzic Ermin、Shrestha Raunak、Ouyang Hua、Radivojac Predrag、Sahinalp Cenk、Menczer Filippo、Chang Yi、Saha Avishek、Mamitsuka Hiroshi、Yin Dawei
    • Journal Title

      IEEE Transactions on Knowledge and Data Engineering

      Volume: n/a Issue: 7 Pages: 1-1

    • DOI

      10.1109/tkde.2018.2789451

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra2018

    • Author(s)
      Nguyen Dai Hai、Nguyen Canh Hao、Mamitsuka Hiroshi
    • Journal Title

      Bioinformatics

      Volume: 34 Issue: 13 Pages: i323-i332

    • DOI

      10.1093/bioinformatics/bty252

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Convex Coupled Matrix and Tensor Completion2018

    • Author(s)
      Wimalawarne Kishan、Yamada Makoto、Mamitsuka Hiroshi
    • Journal Title

      Neural Computation

      Volume: 30 Issue: 11 Pages: 3095-3127

    • DOI

      10.1162/neco_a_01123

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] AiProAnnotator: Low-rank Approximation with network side information for high-performance, large-scale human Protein abnormality Annotator2018

    • Author(s)
      Gao Junning、Yao Shuwei、Mamitsuka Hiroshi、Zhu Shanfeng
    • Journal Title

      Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018)

      Volume: - Pages: 13-20

    • DOI

      10.1109/bibm.2018.8621517

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms.2018

    • Author(s)
      Wimalawarme, K. and Mamitsuka, H.
    • Journal Title

      Proceedings of the Thirty-Second Annual Conference on Neural Information Processing Systems (NeurIPS 2018)

      Volume: - Pages: 6902-6910

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Factor Analysis on a Graph2018

    • Author(s)
      Karasuyama, M. and Mamitsuka, H.
    • Journal Title

      Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018) (JMLR Workshop and Conference Proceedings (PMLR))

      Volume: 84 Pages: 1117-1126

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms2018

    • Author(s)
      Wimalawarne Kishan, Mamitsuka Hiroshi
    • Journal Title

      Proceedings of the Thirty-Second Annual Conference on Neural Information Processing Systems (NeurIPS 2018)

      Volume: - Pages: 6902-6910

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank2018

    • Author(s)
      You Ronghui、Zhang Zihan、Xiong Yi、Sun Fengzhu、Mamitsuka Hiroshi、Zhu Shanfeng
    • Journal Title

      Bioinformatics

      Volume: 34 Issue: 14 Pages: 2465-2473

    • DOI

      10.1093/bioinformatics/bty130

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining2018

    • Author(s)
      Takahashi Kei-ichiro、duVerle David A.、Yotsukura Sohiya、Takigawa Ichigaku、Mamitsuka Hiroshi
    • Journal Title

      Methods in Molecular Biology

      Volume: 1807 Pages: 95-111

    • DOI

      10.1007/978-1-4939-8561-6_8

    • NAID

      120006552927

    • ISBN
      9781493985609, 9781493985616
    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank2018

    • Author(s)
      Deng Jieyao、Yuan Qingjun、Mamitsuka Hiroshi、Zhu Shanfeng
    • Journal Title

      Methods in Molecular Biology

      Volume: 1807 Pages: 195-202

    • DOI

      10.1007/978-1-4939-8561-6_14

    • NAID

      120006552925

    • ISBN
      9781493985609, 9781493985616
    • Related Report
      2017 Annual Research Report
    • Open Access / Int'l Joint Research
  • [Journal Article] MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing2018

    • Author(s)
      Peng Shengwen、Mamitsuka Hiroshi、Zhu Shanfeng
    • Journal Title

      Methods in Molecular Biology

      Volume: 1807 Pages: 203-209

    • DOI

      10.1007/978-1-4939-8561-6_15

    • NAID

      120006552926

    • ISBN
      9781493985609, 9781493985616
    • Related Report
      2017 Annual Research Report
    • Open Access / Int'l Joint Research
  • [Journal Article] Generalized sparse learning of linear models over the complete subgraph feature set2017

    • Author(s)
      Takigawa I, Mamitsuka H
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: 36(3) Issue: 3 Pages: 617-624

    • DOI

      10.1109/tpami.2016.2567399

    • NAID

      120006382284

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Convex Factorization Machine for Toxicogenomics Prediction2017

    • Author(s)
      Yamada Makoto、Lian Wenzhao、Goyal Amit、Chen Jianhui、Wimalawarne Kishan、Khan Suleiman A.、Kaski Samuel、Mamitsuka Hiroshi、Chang Yi
    • Journal Title

      Proceedings of the Twenty-third ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017)

      Volume: - Pages: 1215-1224

    • DOI

      10.1145/3097983.3098103

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Adaptive Edge Weighting for Graph-Based Learning Algorithms2017

    • Author(s)
      M. Karasuyama, and H. Mamitsuka,
    • Journal Title

      Machine Learning

      Volume: 106 Issue: 2 Pages: 307-335

    • DOI

      10.1007/s10994-016-5607-3

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines2017

    • Author(s)
      G?nen Mehmet et al.
    • Journal Title

      Cell Systems

      Volume: 5 Issue: 5 Pages: 485-497.e3

    • DOI

      10.1016/j.cels.2017.09.004

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Exploring Phenotype Patterns of Breast Cancer within Somatic Mutations: a Modicum in the Intrinsic Code2017

    • Author(s)
      Yotsukura Sohiya, Karasuyama Masayuki, Takigawa Ichigaku, and Mamitsuka Hiroshi
    • Journal Title

      Briefings in Bioinformatics

      Volume: 18 Pages: bbw040-bbw040

    • DOI

      10.1093/bib/bbw040

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Computational Recognition for Long Non-coding RNA (lncRNA): Software and Databases.2016

    • Author(s)
      Yotsukura, S., duVerle D., Hancock, T., Natsume-Kitatani, Y. and Mamitsuka, H.
    • Journal Title

      Briefings in Bioinformatics

      Volume: unassigned Issue: 1 Pages: 9-27

    • DOI

      10.1093/bib/bbv114

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Scalable Probabilistic Matrix Factorization with Graph-Based Priors.2020

    • Author(s)
      Strahl, J., Peltonen, J., Mamitsuka, H. and Kaski, S.
    • Organizer
      34th AAAI Conference on Artificial Intelligence (AAAI 2020)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Fast and Robust Multi-View Multi-Task Learning via Group Sparsity2019

    • Author(s)
      Sun Lu、Nguyen Canh Hao、Mamitsuka Hiroshi
    • Organizer
      28th International Joint Conference on Artificial Intelligence (IJCAI 2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Multiplicative Sparse Feature Decomposition for Efficient Multi-View Multi-Task Learning.2019

    • Author(s)
      Sun Lu、Nguyen Canh Hao、Mamitsuka Hiroshi
    • Organizer
      28th International Joint Conference on Artificial Intelligence (IJCAI 2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Factor Analysis on a Graph.2018

    • Author(s)
      Karasuyama, M. and Mamitsuka, H.
    • Organizer
      Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] AiProAnnotator: Low-rank Approximation with network side information for high-performance, large-scale human Protein abnormality Annotator2018

    • Author(s)
      Gao Junning、Yao Shuwei、Mamitsuka Hiroshi、Zhu Shanfeng
    • Organizer
      2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms.2018

    • Author(s)
      Wimalawarme, K. and Mamitsuka, H.
    • Organizer
      Thirty-Second Annual Conference on Neural Information Processing Systems (NeurIPS 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms2018

    • Author(s)
      Wimalawarne Kishan, Mamitsuka Hiroshi
    • Organizer
      Thirty-Second Annual Conference on Neural Information Processing Systems (NeurIPS 2018)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Factor Analysis on a Graph2018

    • Author(s)
      Karasuyama, M. and Mamitsuka, H.
    • Organizer
      21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Book] Machine Learning for Marketing2019

    • Author(s)
      Hiroshi Mamitsuka
    • Total Pages
      237
    • Publisher
      Global Data Science Publishing
    • ISBN
      9784991044526
    • Related Report
      2018 Annual Research Report
  • [Book] Data Mining for Systems Biology2018

    • Author(s)
      Hiroshi Mamitsuka
    • Total Pages
      243
    • Publisher
      Springer
    • ISBN
      9781493985609
    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
  • [Book] Textbook of Machine Learning and Data Mining: with Bioinformatics Applications2018

    • Author(s)
      Hiroshi Mamitsuka
    • Total Pages
      388
    • Publisher
      Global Data Science Publishing
    • ISBN
      9784991044502
    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
  • [Remarks] "Textbook of Machine Learning and Data Mining"

    • URL

      https://www.bic.kyoto-u.ac.jp/pathway/mami/pubs/MLTextbook.html

    • Related Report
      2018 Annual Research Report
  • [Remarks] "Machine Learning for Marketing"

    • URL

      https://www.bic.kyoto-u.ac.jp/pathway/mami/pubs/ML4Marketing.html

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi