Project/Area Number |
16H03881
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Optical engineering, Photon science
|
Research Institution | The University of Tokyo |
Principal Investigator |
Ishikawa Kenichi 東京大学, 大学院工学系研究科(工学部), 教授 (70344025)
|
Co-Investigator(Kenkyū-buntansha) |
佐藤 健 東京大学, 大学院工学系研究科(工学部), 准教授 (30507091)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥10,660,000 (Direct Cost: ¥8,200,000、Indirect Cost: ¥2,460,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | アト秒科学 / 第一原理計算 / 極紫外自由電子レーザー / 角度分解光電子分光 / 光電子放出遅延 / 自由電子レーザー / 応用光学・量子光工学 / 量子エレクトロニクス |
Outline of Final Research Achievements |
Recent developments in high-order harmonic generation and free-electron lasers have enabled to generate attosecond-to-femtosecond laser pulses in the extreme-ultraviolet (XUV) range. In this study, we have studied photoemission from Ne using first-principles simulations. First, we have numerically implemented the infinite-range exterior complex scaling as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method for multielectron atoms. Next, We have numerically implemented the time-dependent surface flux method, an efficient computational scheme to extract photoelectron energy spectra. Then, we have simulated the coherent-control experiment conducted in the XUV free-electron laser FERMI, where Ne was ionized by two-color XUV pulses and the photoelectron angular distribution (PAD) was measured. Our simulation have excellently reproduced the dependence of PAD on the relative phase between the two colors.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果を通じて、高強度レーザーパルスや超短パルスコヒーレント極紫外パルスによる、数十もの電子を含む原子の光イオン化を第一原理的にシミュレーションすることが可能になった。計算によって得られるイオン化の収率や角度分解光電子エネルギースペクトルは数値的に厳密なものであり、実験との一致はみごとで、実験で観測される様々な現象のメカニズム等に関する理解の深化に貢献できる。数年前には夢物語と思われた第一原理シミュレーションを実現したといえ、アト秒~フェムト秒極紫外パルスを使って電子ダイナミクスを観測・制御する技術の発展に、大きく寄与すると期待される。
|