Project/Area Number |
16H03918
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Computational science
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Yamamoto Makoto 東京理科大学, 工学部機械工学科, 教授 (20230584)
|
Co-Investigator(Kenkyū-buntansha) |
福島 直哉 東海大学, 工学部, 特任講師 (80585240)
守 裕也 電気通信大学, 大学院情報理工学研究科, 准教授 (80706383)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2018: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2016: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
|
Keywords | 計算力学 / マルチフィジックス / 着氷シミュレーション / ハイブリッド法 / ジェットエンジン |
Outline of Final Research Achievements |
Icing is a phenomenon that supercooled droplets in the air impact and accrete on a wall. It is observed on an aircraft and in a jet engine. When icing occurs in a jet engine, it leads to harmful affects like the critical degradation of aerodynamic perfomance. Although the researches have been conducted in the world, the universal icing model and simulation techniques have not been established. Therefore, they are strongly needed in the industries. In the present research, a particle/grid-based hybrid icing simulation code was newly developed. First, based on the MPS method, the universal icing model was developed and successfully verified for rime and glaze ice conditions. Second, this model was implimented in our grid-based icing simulation code, and the superiority of the code was confirmed through verifications. Finally, the developed code was applied to compressor blades in a jet engine, and it was confirmed that the code can reasonably reproduce the icing phenomenon.
|
Academic Significance and Societal Importance of the Research Achievements |
粒子/格子法ハイブリッド着氷予測手法を開発したことは,本研究が世界初である.本研究により着氷をより妥当に再現できるモデル及びシミュレーション手法が確立され,ジェットエンジンの着氷発生および着氷による空力性能低下のメカニズムが明らかとなった点は,高い工学的な価値を有する.また,本着氷予測コードを用いることにより,ジェットエンジンの信頼性向上・安全運転に多大な貢献が期待できる.さらに,風力タービン,自動車,鉄道,送電線などにおける着氷にも本研究成果を適用することが可能であり,各種機械の性能維持や事故防止に大いに貢献できるとともに,将来的には,エネルギー・環境問題に寄与するものと期待される.
|