Project/Area Number |
16H04345
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electron device/Electronic equipment
|
Research Institution | The University of Tokyo |
Principal Investigator |
Mita Yoshio 東京大学, 大学院工学系研究科(工学部), 准教授 (40323472)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥16,640,000 (Direct Cost: ¥12,800,000、Indirect Cost: ¥3,840,000)
Fiscal Year 2018: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2017: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2016: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
|
Keywords | MEMS / 高電圧集積回路 / CMOS-MEMS / 電気浸透流 / マイクロマシン / マイクロアクチュエータ / バイオミメティクス / 精密部品加工 / 先端機能デバイス / 知能ロボティクス / 電子デバイス・機器 / 電子デバイス・集積回路 / 知能ロボティックス |
Outline of Final Research Achievements |
This research aimed at establishing methodology to make Micro Electro Mechanical Systems (MEMS), especially microactuators as well as transistor circuits, usable in aqueous environment. Special emphasis was put on integration with integrated circuit, referred as CMOS-MEMS. A foundry-made LSI chip was post-processed in open micro and nano fabrication platform in order to introduce new functionality to both MEMS and circuit itself. Several outcomes have been demonstrated, such as electroosmotic (EO) fluidic microactuator that demonstrated world’s lowest supply (5V), highest speed (137um/s, which is 7.4 times as fast as top value, to our best knowledge). As a direct application, liquid circulating LSI circuit cooling system for hostspot removal was demonstrated. Such microactuators are expected to provide future tiny MEMS agent that can autonomously go into hardly-accessible places for in-environment analyses. A couple of CMOS-MEMS devices for in-situ analyses have been developed.
|
Academic Significance and Societal Importance of the Research Achievements |
自律自走式MEMSという遠い目標を立て、そこから導かれる学術的課題に一つずつ正面から取り組み、新規デバイスとその原理の探究によって解決するという、ニーズ先行型の研究によって、集積電子素子(CMOS-MEMS)の設計試作手法が確立した。得られた知見を活かし、バイオ・メディカルや化学分野への広い応用分野で、力の発生が可能な新規素子を用いた研究への展開が期待される。
|