Construction and application of the fundamental process model of hydrogen embrittlement
Project/Area Number |
16H06062
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Saga University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥24,830,000 (Direct Cost: ¥19,100,000、Indirect Cost: ¥5,730,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥13,000,000 (Direct Cost: ¥10,000,000、Indirect Cost: ¥3,000,000)
Fiscal Year 2016: ¥10,140,000 (Direct Cost: ¥7,800,000、Indirect Cost: ¥2,340,000)
|
Keywords | 水素脆化 / 格子欠陥 / 転位 / 材料強度 / 純鉄 / 分子静力学 / 転位動力学 / 機械材料・材料力学 / 分子静力学法 / 環境強度 / 疲労 / 転位の可動性 / 分子動力学 / 金属物性 |
Outline of Final Research Achievements |
In order to clarify the hydrogen embrittlement mechanism, many studies are performed focused on each hydrogen embrittlement fundamental processes. For example, atomic simulation revealed that the dislocation mobility alter depending on mechanical conditions and hydrogen concentration. This trend is also confirmed by nano-indentation tests; metals show hardened characteristic under higher hydrogen concentration, however, the characteristic change to softening under low hydrogen concentration conditions. This experimental results are qualitatively in good agreement with atomic simulation results. In addition, it is also confirmed that these tendency definitely occur under actual hydrogen embrittlement crack growth process. Based on those studies, the base of the fundamental process model of hydrogen embrittlement is constructed.
|
Academic Significance and Societal Importance of the Research Achievements |
水素脆化は100年以上にわたり研究が続けられており,この問題は近年では燃料電池システムを活用した水素エネルギー社会実現のための最も重要な課題のひとつとなっている.本研究では水素脆化の素過程に着目した研究を実施し,これまで未解明であった水素による材料の硬化と軟化という一見矛盾した結果を,転位の可動性に着目することで合理的に説明することに成功した.さらに水素脆化素過程の競合によって支配的水素脆化メカニズムが変化すると考え,水素脆化素過程モデルの基礎モデルを構築した.水素脆化メカニズムの理解を通じて,水素関連機器の安全な利用につながる成果である.
|
Report
(4 results)
Research Products
(17 results)