• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research related to value distribution of zeta function and infinitely divisible distribution

Research Project

Project/Area Number 16K05077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo University of Science

Principal Investigator

Nakamura Takashi  東京理科大学, 教養教育研究院野田キャンパス教養部, 准教授 (50532355)

Project Period (FY) 2016-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsゼータ関数 / L関数 / 関数等式 / 実零点 / 無限分解可能性 / 臨界線上の零点 / 急速収束級数表示 / 特異点消去 / L関数 / 多重ゼータ関数 / 零点 / 無限分解可能分布 / 特性関数 / 代数学
Outline of Final Research Achievements

The contents of the research can be roughly divided into five.
(1) Explicit formulas, value relational expressions, and functional relational expressions for values of multiple zeta functions. (2) Value distribution of zeta function, mainly universality. (3) Zeros of the zeta function. (4) Functional equation of the zeta function. (5) Zeta function and infinite divisibility.
In particular, (4) is new research conducted during the 16K05077 period. All of these studies are related to the zeta function and L-function, which play important roles in modern mathematics. They have a long tradition of more than 150 years, and have been actively studied all over the world since their birth.

Academic Significance and Societal Importance of the Research Achievements

リーマンゼータ関数と全く同じ関数等式を持ち,かつ無限個の複素零点が臨界線上にあるゼータ関数を歴史上初めて定義した.ゼータ関数の研究はゼータ分布の研究に繋がり,保険数理への応用が期待される。さらに,ゼータ関数の普遍性はその性質から機械学習への応用が期待され、実際に福岡大の天羽氏,岡山理科大の青山氏と共同で,「制御型Loewner--Kufarev方程式の解の形-KPZ方程式の理解に向けて-」というタイトルで画像電子学会へ論文を投稿した.

Report

(8 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (39 results)

All 2023 2022 2021 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (14 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 14 results,  Open Access: 2 results,  Acknowledgement Compliant: 5 results) Presentation (19 results) (of which Int'l Joint Research: 13 results,  Invited: 11 results) Book (1 results) Remarks (3 results)

  • [Int'l Joint Research] Adam Mickiewicz University(Poland)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Adam Mickiewicz University(Poland)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Bounds for the Tornheim double zeta function2023

    • Author(s)
      Takashi Nakamura
    • Journal Title

      Proceedings of the American Mathematical Society. Ser. B

      Volume: 10 Issue: 1 Pages: 1-12

    • DOI

      10.1090/bproc/142

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Functional equation and zeros on the critical line of the quadrilateral zeta function.2022

    • Author(s)
      Takashi Nakamura
    • Journal Title

      J. Number Theory

      Volume: 233 Pages: 432-455

    • DOI

      10.1016/j.jnt.2021.06.017

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rapidly convergent series representations of symmetric Tornheim double zeta functions.2021

    • Author(s)
      Takashi Nakamura
    • Journal Title

      Acta Math. Hungar.

      Volume: 165 Issue: 2 Pages: 397-414

    • DOI

      10.1007/s10474-021-01189-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Symmetric Tornheim double zeta functions2021

    • Author(s)
      Nakamura Takashi
    • Journal Title

      Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg

      Volume: online Issue: 1 Pages: 5-14

    • DOI

      10.1007/s12188-021-00232-4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-universality of the Riemann zeta function and its derivatives when σ≧12019

    • Author(s)
      Hirofumi Nagoshi, Takashi Nakamura
    • Journal Title

      Journal of Approximation Theory

      Volume: 241 Pages: 57-62

    • DOI

      10.1016/j.jat.2019.01.006

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Selberg’s orthonormality conjecture and joint universality of L-functions2017

    • Author(s)
      Lee Yoonbok、Nakamura Takashi、Pankowski Lukasz
    • Journal Title

      Mathematische Zeitschrift

      Volume: 286 Issue: 1-2 Pages: 1-18

    • DOI

      10.1007/s00209-016-1754-2

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Zeros of polynomials of derivatives of zeta functions2017

    • Author(s)
      Nakamura Takashi
    • Journal Title

      Proc. Amer. Math. Soc.

      Volume: 145 Issue: 7 Pages: 2849-2858

    • DOI

      10.1090/proc/13460

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Effective version of self-approximation for the Riemann zeta function2017

    • Author(s)
      Nakamura Takashi、Pankowski Lukasz
    • Journal Title

      Mathematische Nachrichten

      Volume: 290 Issue: 2-3 Pages: 401-414

    • DOI

      10.1002/mana.201400107

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Joint universality for Lerch zeta-functions2017

    • Author(s)
      Lee Yoonbok、Nakamura Takashi、Pankowski Lukasz
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 69 Pages: 153-161

    • NAID

      130005310383

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On complex zeros off the critical line for non-monomial polynomial of zeta-functions2016

    • Author(s)
      Takashi Nakamura, Lukasz Pankowski
    • Journal Title

      Mathematische Zeitschrift

      Volume: 284 Issue: 1-2 Pages: 23-39

    • DOI

      10.1007/s00209-016-1643-8

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta distributions2016

    • Author(s)
      Takashi Nakamura
    • Journal Title

      Infinite Dimensional Analysis, Quantum Probability

      Volume: 19 Issue: 04 Pages: 12-12

    • DOI

      10.1142/s0219025716500296

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Real zeros of Hurwitz-Lerch zeta functions in the interval (-1,0)2016

    • Author(s)
      Takashi Nakamura
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 438 Issue: 1 Pages: 42-52

    • DOI

      10.1016/j.jmaa.2016.01.068

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions2016

    • Author(s)
      Takashi Nakamura
    • Journal Title

      Mathematical Proceedings of the Cambridge Philosophical Society

      Volume: 160 Issue: 1 Pages: 39-50

    • DOI

      10.1017/s0305004115000547

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Value distribution for the derivatives of the logarithm of $L$-functions from the Selberg class in the half-plane of absolute convergence2016

    • Author(s)
      Takashi Nakamura, Lukasz Pankowski
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 433 Issue: 1 Pages: 566-577

    • DOI

      10.1016/j.jmaa.2015.08.003

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] $L$-functions with Riemann's functional equation and real zeros of Dirichlet $L$-functions2021

    • Author(s)
      Takashi Nakamura
    • Organizer
      13th International Symposium of Natural Science, Incheon National University
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bounds for the Tornheim double zeta function2021

    • Author(s)
      Takashi Nakamura
    • Organizer
      九大多重ゼータセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Bounds for the Tornheim double zeta function2021

    • Author(s)
      Takashi Nakamura
    • Organizer
      第15回ゼータ若手研究集会
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Rapidly convergent series representations of symmetric Tornheim double zeta functions2021

    • Author(s)
      Takashi Nakamura
    • Organizer
      解析的整数論とその周辺
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] On real zeros of zeta functions composed by the Hurwitz and periodic zeta functions2021

    • Author(s)
      Takashi Nakamura
    • Organizer
      第14回ゼータ若手研究集会
    • Related Report
      2020 Research-status Report
  • [Presentation] On the quadrilateral zeta function2020

    • Author(s)
      Takashi Nakamura
    • Organizer
      解析的整数論の展望と諸問題
    • Related Report
      2020 Research-status Report
  • [Presentation] Symmetric Tornheim double zeta functions2019

    • Author(s)
      Takashi Nakamura
    • Organizer
      Number Theory Down Under 7
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Symmetric Tornheim double zeta functions2019

    • Author(s)
      Takashi Nakamura
    • Organizer
      関西多重ゼータ研究会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Functional equations and zeros of the bilateral Hurwitz and periodic zeta functions2019

    • Author(s)
      Takashi Nakamura
    • Organizer
      International Conference on Number Theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Symmetric Tornheim double zeta functions2019

    • Author(s)
      Takashi Nakamura
    • Organizer
      理研数論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Zeta distributions generated by Dirichlet series and their (quasi) infinite divisibility2019

    • Author(s)
      Takashi Nakamura
    • Organizer
      第12回ゼータ若手研究集会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Functional equations and zeros of the bilateral Hurwitz and periodic zeta functions2018

    • Author(s)
      Takashi Nakamura
    • Organizer
      解析的整数論とその周辺
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Selberg's orthonormality conjecture and joint universality of $L$-functions2017

    • Author(s)
      Nakamura Takashi
    • Organizer
      3rd Japanese-German Number Theory Workshop
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On zeros of derivatives of the prime zeta-function2017

    • Author(s)
      Nakamura Takashi
    • Organizer
      Number Theory Week 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Non universality of the Riemann zeta function when $\sigma \ge 1$2017

    • Author(s)
      Nakamura Takashi
    • Organizer
      One day seminar on analytic number theory
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Non universality of the Riemann zeta function when $\sigma \ge 1$2017

    • Author(s)
      Takashi Nakamura
    • Organizer
      French-Japanese Zeta Functions
    • Place of Presentation
      Lille University
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 主に2重ゼータ又はL値と関数について、自分の古い結果を中心に2017

    • Author(s)
      Takashi Nakamura
    • Organizer
      第10回多重ゼータ研究集会
    • Place of Presentation
      近畿大学
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Universality of the Riemann zeta function in the region of absolute convergence2016

    • Author(s)
      Takashi Nakamura
    • Organizer
      8-th Internitinal Symposium on Natural Science
    • Place of Presentation
      Incheon National University
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] リーマンゼータ関数の絶対収束領域における普遍性2016

    • Author(s)
      Takashi Nakamura
    • Organizer
      解析的整数論の諸問題と展望
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Book] Various Aspects of Multiple Zeta Functions - in honor of Professor Kohji Matsumoto's 60th birthday2020

    • Author(s)
      Hidehiko Mishou, Takashi Nakamura, Masatoshi Suzuki, and Yumiko Umegaki
    • Total Pages
      411
    • Publisher
      Mathematical Society of Japan
    • ISBN
      9784864970884
    • Related Report
      2020 Research-status Report
  • [Remarks] Takashi Nakamura

    • URL

      https://sites.google.com/site/takashinakamurazeta/home

    • Related Report
      2022 Annual Research Report 2020 Research-status Report 2019 Research-status Report 2018 Research-status Report 2016 Research-status Report
  • [Remarks]

    • URL

      https://sites.google.com/site/takashinakamurazeta/

    • Related Report
      2021 Research-status Report
  • [Remarks] Takashi Nakamura

    • URL

      https://sites.google.com/site/takashinakamurazeta/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi