• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric analysis on Kuramochi boundaries

Research Project

Project/Area Number 16K05124
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKanazawa University

Principal Investigator

Kasue Atsushi  金沢大学, 数物科学系, 教授 (40152657)

Co-Investigator(Kenkyū-buntansha) 服部 多恵  石川工業高等専門学校, 一般教育科, 准教授 (40569365)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords非再帰的ネットワーク / 倉持境界 / ディリクレ・ノイマン写像 / モスコ型収束 / ディリクレ境界値問題 / ペロン法 / リウヴィユ性 / 大森-ヤウ型の弱最大値原理 / ネットワーク / ディリクレ形式 / 非線形ポテンシャル論 / リーマン多様体 / モスコ収束 / ディリクレエネルギ‐有限関数 / ランダムウォーク / ラプラス作用素 / ディリクレ空間
Outline of Final Research Achievements

We study the Kuramochi boundary of a connected nonparabolic network in connection with the Hilbert space consisting of functions with finite Dirichlet sum. It is proved that the Dirichlet form induced on the boundary of a connected finite subset of the network Mosco-converges to that on the Kuramochi boundary as the connected finite subsets increases to exhaust the network. When we consider a nonparabolic weighted Riemannian manifold, we find the similar result hold. We deal also with a nonlinear resistive network in the framework of modular sequence spaces, and study the Kuramochi type boundary. We show that Perron method is applicable to solve Dirichlet boundary value problems, and the regularity of the boundary is investigated. Moreover the equivalence of the Liouville property, the Khas'minskii condition and the weak Omori-Yau maximum principle for operators of Laplacian with potential term is proved. A number of criteria for these properties are given.

Academic Significance and Societal Importance of the Research Achievements

ネットワークの収束に関する過去に類似の結果がないオリジナルな発見は、非再帰的ネットワークのエネルギー有限な調和関数全体のなす空間を表現する倉持コンパクト化と倉持境界に関して新しい見識を提供する。非再帰的重み付きリーマン多様体にも適用できる内容で、倉持境界に関する課題解決の重要なステップとなる。
また、モジュラー列空間の枠組みにおける非線形抵抗ネットワークの非線形ポテンシャル論の研究成果は、先駆け的内容で、今後の非線形ネットワークの幾何解析の基礎となる。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2017 2016

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results) Book (1 results)

  • [Journal Article] Resolutive ideal boundaries of nonlinear resistive networks2020

    • Author(s)
      Kasue, Atsushi
    • Journal Title

      Positivity

      Volume: 24 Issue: 1 Pages: 151-196

    • DOI

      10.1007/s11117-019-00672-6

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Convergence of Dirichlet forms induced on boundaries of transient networks2017

    • Author(s)
      Atsushi Kasue
    • Journal Title

      Potential Anal.

      Volume: 47 Issue: 2 Pages: 189-233

    • DOI

      10.1007/s11118-017-9613-2

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] A. Thomson's principle and a Rayleigh's monotonicity law on nonlinear networks2016

    • Author(s)
      A. Kasue
    • Journal Title

      Potential Anal

      Volume: 45 Issue: 4 Pages: 655-701

    • DOI

      10.1007/s11118-016-9562-1

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 非線形抵抗ネットワークのラプラス作用素に関するLiouville 型定理2019

    • Author(s)
      加須栄篤
    • Organizer
      月曜解析セミナー・北海道大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Convergence of Dirichlet forms induced on boundaries of nonparabolic weighted Riemannian manifolds2017

    • Author(s)
      Atsushi Kasue
    • Organizer
      Dirichlet forms and their geometry
    • Place of Presentation
      Tohoku University GSIS
    • Year and Date
      2017-03-18
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dirichlet fnite p-harmonic functions on graphs and manifolds2017

    • Author(s)
      Atsushi Kasue
    • Organizer
      Global properties in potential theory of continuous and discrete spaces
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] ベクトル解析2019

    • Author(s)
      加須栄篤
    • Total Pages
      206
    • Publisher
      共立出版
    • ISBN
      9784320111851
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi