• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of sheaf models in constructive reverse mathematics

Research Project

Project/Area Number 16K05251
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionJapan Advanced Institute of Science and Technology

Principal Investigator

ISHIHARA Hajime  北陸先端科学技術大学院大学, 先端科学技術研究科, 教授 (10211046)

Research Collaborator Nemoto Takako  
Yokoyama Keita  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords構成的数学 / 逆数学 / 層モデル / 数学基礎論
Outline of Final Research Achievements

This research aims at (1) solving open problems and finding new axioms in constructive reverse mathematics, (2) developing a systematic method to separate axioms and theorems using sheaf models, (3) developping the systematic method in constructive mathematics.
(1) We showed that the monotone convergence theorem is equivalent to a restricted bounded comprehension axiom, and showed that the binary expansion theorem and the intermediate value theorem are equivalent to restricted versions of the weak Koenig lemma. (2) We propose the notion of an extended frame consisting of two partially ordered sets and a monotone mapping between them, and develop a systematic method to separate axioms and theorems using Kripke sheaf models over extended frames. (3) We showed that the construction of a Kripke sheaf model over an extended frame is done within the framework of constructive set theory.

Academic Significance and Societal Importance of the Research Achievements

構成的逆数学は、様々な哲学のもとに展開された数学を、統一的な視点から論理的公理および関数(集合)の存在公理などにより分類・整理・体系化するという斬新で独創的な研究である。本研究により、構成的逆数学の重要な未解決問題を解決し、新たな公理を発見し、公理(定理)の体系的な分離手法を構築することにより、排中律などの論理的公理、可算選択公理などの関数の存在公理、および新たに発見された公理のなす束構造の解明と解析が大きく進展した。
直観主義論理では証明とプログラムの間に自然な対応がある。直観主義論理の証明からプログラムを抽出し高信頼ソフトウェアを開発するための基盤理論の深化や限界の解明に寄与した。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (15 results)

All 2019 2018 2017 Other

All Int'l Joint Research (4 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (7 results) (of which Int'l Joint Research: 1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] ルートヴィヒ・マクシミリアン大学ミュンヘン/ダルムシュタット工科大学(ドイツ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] パドヴァ大学(イタリア)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] ルートヴィヒ・マクシミリアン大学ミュンヘン(ドイツ)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] ルートヴィヒ・マクシミリアン大学ミュンヘン(ドイツ)

    • Related Report
      2016 Research-status Report
  • [Journal Article] The binary expansion and the intermediate value theorem in constructive reverse mathematics2019

    • Author(s)
      Josef Berger, Hajime Ishihara, Takayuki Kihara and Takako Nemoto
    • Journal Title

      Arch. Math. Logic

      Volume: 58 Pages: 203-217

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Consistency of the intensional level of the minimalist foundation with Church's thesis and axiom of choice2018

    • Author(s)
      Hajime Ishihara, Maria Emilia Maietti, Samuele Maschio and Thomas Streicher
    • Journal Title

      Arch. Math. Logic

      Volume: 57 Pages: 873-888

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On Brouwer's continuity principle2018

    • Author(s)
      Hajime Ishihara
    • Journal Title

      Indag. Math. (N.S.)

      Volume: 29 Pages: 1511-1524

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Reverse mathematics of non-deterministic inductive definitions2018

    • Author(s)
      Hajime Ishihara
    • Organizer
      Proof and Computation
    • Related Report
      2018 Annual Research Report
  • [Presentation] Constructive reverse mathematics: an introduction and recent results2018

    • Author(s)
      Hajime Ishihara
    • Organizer
      Proof, Computation and Complexity
    • Related Report
      2018 Annual Research Report
  • [Presentation] The constructive Hahn-Banach theorem, revisited2018

    • Author(s)
      Hajime Ishihara
    • Organizer
      Constructive Mathematics
    • Related Report
      2018 Annual Research Report
  • [Presentation] Coequalisers in the category of basic pairs2018

    • Author(s)
      Hajime Ishihara
    • Organizer
      third core meeting
    • Related Report
      2017 Research-status Report
  • [Presentation] On Brouwer's continuity principle2017

    • Author(s)
      Hajime Ishihara
    • Organizer
      Asian Logic Conference
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] The Hahn-Banach theorem, constructively revisited2017

    • Author(s)
      Hajime Ishihara
    • Organizer
      Proof and Computation
    • Related Report
      2017 Research-status Report
  • [Presentation] Coequalisers in the category of basic pairs2017

    • Author(s)
      Hajime Ishihara
    • Organizer
      1st Swiss-Italian Workshop on Proof and Computation
    • Related Report
      2017 Research-status Report
  • [Funded Workshop] 日本学術振興会研究拠点形成事業「第2回数理論理学とその応用ワークショップ」2018

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi