Development of novel polythiophenes with well-defined structures and their application to high-performance thermoelectric devices
Project/Area Number |
16K05920
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Polymer/Textile materials
|
Research Institution | Hiroshima University |
Principal Investigator |
Imae Ichiro 広島大学, 工学研究科, 准教授 (90293399)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 熱電変換 / ポリチオフェン / 構造制御 / 酸化率制御 / ドーパントイオン / 電気伝導度 / ゼーベック係数 / ドープ率 / ヘキシル基 / エチレンジオキシ基 / 高分子合成 / 廃熱利用 / 有機導体 / エネルギー効率化 |
Outline of Final Research Achievements |
In this study, novel polythiophenes with well-defined structures were synthesized by the organic synthetic methods and their oxidation levels were precisely controlled by the electrochemical method. By controlling the number of thiophene units having electron-donating ethylenedioxy group, electrical conductivities and Seebeck coefficients of polythiophenes having 3,4-ethylenedioxythiophene (EDOT) in partial were systematically changed. The oxidation levels of polythiophenes were controlled by the potential-step chronocoulometry (PSC) method. When the oxidation levels of polythiophenes were increased, the electrical conductivities increased while the Seebeck coefficients decreased. Chemical structures of dopant species were also controlled. By the introduction of polysiloxane-based polyanion as a dopant, the free-standing and flexible films of conducting polymers were obtained.
|
Academic Significance and Societal Importance of the Research Achievements |
世界で消費されるエネルギーのうち、約3分の2が未利用のまま排熱として地球環境に棄てられている。この排熱の80%以上が200℃以下の中低温排熱エネルギーであるが、この温度域の熱は周囲との温度差が小さいために回収効率が低く十分な排熱回収が行えない。この排熱によって生成する熱エネルギーを電気エネルギーに変換(熱電変換)することができれば、電気依存性の高い現代社会に大いなる貢献ができる。 本研究では、これまで検討例が極めて少ない有機材料を用いた熱電変換材料に関する研究を行った。本成果はウェアラブル電子デバイスや小型電子計測機器のエネルギー源としての応用に期待がもたれる点で意義深い。
|
Report
(4 results)
Research Products
(45 results)