Preparation of silicon nanocluster-supporting porous carbon sphere negative electrode with high lithiation capacity
Project/Area Number |
16K06734
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Inorganic materials/Physical properties
|
Research Institution | Gunma National College of Technology |
Principal Investigator |
Ota Michiya 群馬工業高等専門学校, 物質工学科, 教授 (40168951)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Siナノ粒子 / リチウム吸蔵能 / 多孔質炭素小球体 / 負極材料 / リチウムイオン二次電池 / Sn / 無電解メッキ / 放電容量 / Si-O結合 / シリコンナノ粒子 / 有機シラン / 熱分解反応 / シリコン酸化被膜 / 炭素小球体 / コイン型セル / 充放電特性 / ポリシラン / 熱分解 / 充放電現象 / 高放電容量 |
Outline of Final Research Achievements |
Silicon-containing carbon negative electrode materials were prepared as a high discharged capacity electrode, since silicon possesses potentially lithium storage ability. A mixture of silicon nanoparticles with a size of 50 nm or organosilicon compounds, polyethylene glycol, thermosetting resin, and acid catalyst was heated and stirred at 130 degree C, and then carbonized by heating at 1000 degree C. Silicon-containing carbon microspheres (Si-CMS) with a particle size of 2-3 μm were obtained through carbonization process. A coin-type cell assembled with Si-CMS with a content of 3 wt% of silicon showed 1.7 times larger discharged capacity than that of CMS with no silicon. In the case of organosilicon compounds-derived Si-CMS, silicon with a size of 30 nm were observed in the inside of CMS and the initial discharge capacity was as high as 840 mAh/g. These results suggest that silicon nanoparticles are effective as one of lithium storage materials to increase discharge capacity.
|
Academic Significance and Societal Importance of the Research Achievements |
学術的意義:ケイ素はリチウム吸蔵能があり、負極電極として4200 mAh/gの高い理論容量が報告されている。しかし、ケイ素は電子伝導が悪く、リチウムの吸・脱着時に100倍を超える体積の膨張・収縮が発生して粉砕化するため電極には適さない。そこで、本研究のように多孔質炭素小球体の孔内にケイ素ナノ粒子を担持できれば問題点を解決して放電容量の増加が期待できる。 社会的意義:日常生活では電子機器の発達や電気自動車への移行にともない高容量のエネルギー貯蔵デバイスが期待されている。黒鉛の11倍の理論容量を持ち、リチウム吸蔵の高いケイ素系電極を導入できれば世界のエネルギー情勢を大きく変革できる。
|
Report
(5 results)
Research Products
(36 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Preparation of carbon microspheres containing silicon nanoparticle for negative electrode for lithium ion secondary battery2017
Author(s)
Michiya Ota, Takuma Ishibashi, Kota Onozuka, Nariaki Nokoya, Ayano Kuribara, Yonekazu Deguchi, Noriko Yoshizawa, Masaya Kodama, Tsuyoshi Honma, and Takayuki Komatsu
Organizer
254th ACS National Meeting & Exposition, Washington DC
Related Report
Int'l Joint Research
-
[Presentation] Preparation of Silicon Nanoparticles by Pyrolysis of Organosilicon Compound in the inside of Porous Carbon2017
Author(s)
Michiya Ota, Kazunari Arai, Masahide Takahashi, Ayano Kuribara, Yonekazu Deguchi, Kota Onozuka, Koji Nakabayashi, Jin Miyawaki, and Seong-Ho Yoon
Organizer
7 th International Conference on Carbon for Energy Storage and Environment Protection (CESEP’17) , Lyon, France
Related Report
Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-