• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Big Data Analysis Using Deep Learning on Extreme Weather Events such as Typhoons

Research Project

Project/Area Number 16K12466
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionNational Institute of Informatics

Principal Investigator

Asanobu Kitamoto  国立情報学研究所, コンテンツ科学研究系, 准教授 (00300707)

Co-Investigator(Renkei-kenkyūsha) FUDEYASU Hironori  横浜国立大学, 教育学部, 准教授 (00435843)
Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords台風 / 深層学習 / ディープラーニング / 気象衛星画像 / パターン認識 / ドボラック法 / 温帯低気圧化 / 時系列モデル / 画像情報処理 / 機械学習 / 気象情報 / 衛星画像 / データセット
Outline of Final Research Achievements

Typhoons are important events both in terms of meteorological research and society, but its analysis on intensity and structure has been dependent on manual analysis by human experts. Hence this research proposed a new method for analyzing typhoons from the viewpoint of big data through the creation of the large-scale dataset of meteorological satellite images on typhoons and the application of machine learning, or deep learning. We tackled four topics, namely "classification of typhoon grades," "regression of typhoon central pressure," "transition from typhoons to extra-tropical cyclones" and "extension to a temporal model." In particular, we obtained interesting results on "transition from typhoons to extra-tropical cyclone," in which we proposed a new deep learning-based index called "extra-tropical transition index." Comparison between the index and JMA best track revealed that transition timing announced from JMA is about a half day later than deep learning-based index.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2018 2017 2016 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Invited: 1 results) Remarks (3 results)

  • [Journal Article] Curation and open science in "Digital Typhoon": Issues toward a sustainable data platform2016

    • Author(s)
      北本 朝展
    • Journal Title

      Journal of Information Processing and Management

      Volume: 59 Issue: 5 Pages: 293-304

    • DOI

      10.1241/johokanri.59.293

    • NAID

      130005253402

    • ISSN
      0021-7298, 1347-1597
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 「デジタル台風」気象衛星画像データセットと機械学習2018

    • Author(s)
      北本 朝展
    • Organizer
      日本気象学会2018年度春季大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] Deep Learningを用いた台風強度推定・発達予測2017

    • Author(s)
      加瀬 紘熙, 筆保 弘徳, 北本 朝展, Danlan CHEN, 山崎 聖太
    • Organizer
      平成29年度京都大学防災研究所共同研究集会「台風研究会」
    • Related Report
      2017 Annual Research Report
  • [Presentation] Deep Learningを用いた台風強度推定・発達予測2017

    • Author(s)
      加瀬 紘熙, 筆保 弘徳, 北本 朝展, Danlan CHEN, 山崎 聖太
    • Organizer
      日本気象学会2017年度秋季大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] デジタル台風:「観測精神」のデジタルアーカイブ2017

    • Author(s)
      北本 朝展
    • Organizer
      デジタルアーカイブ産学官フォーラム ~デジタルアーカイブ社会の実現にむけて~
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Remarks]

    • URL

      http://agora.ex.nii.ac.jp/digital-typhoon/

    • Related Report
      2017 Annual Research Report
  • [Remarks]

    • URL

      https://github.com/lucasrodes/pyphoon/

    • Related Report
      2017 Annual Research Report
  • [Remarks] デジタル台風

    • URL

      http://agora.ex.nii.ac.jp/digital-typhoon/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi