Parallel Structure-Preserving Algorithms: Theory and Numerical Verification
Project/Area Number |
16K17550
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Computational science
|
Research Institution | Osaka University (2018-2020) Nagoya University (2016-2017) |
Principal Investigator |
Miyatake Yuto 大阪大学, サイバーメディアセンター, 准教授 (60757384)
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 数値解析 / 偏微分方程式 / 行列計算 / 常微分方程式 / 数値解法 / 数値線形代数 / 微分方程式 |
Outline of Final Research Achievements |
Long time simulation becomes important in many research fields. Structure-preserving algorithms have been proved to be effective, but it is a challenging task to develop algorithms that are both accurate and efficient. In this study, parallel structure-preserving algorithms are developed that balance the high accuracy and efficiency. Moreover, new algorithms for matrix computation are also developed, which further improves the efficiency of the proposed parallel algorithms.
|
Academic Significance and Societal Importance of the Research Achievements |
現代の科学技術計算では,計算機の発展より遥かに速いスピードで現場のニーズが多様化・大規模化しており,これまで以上に計算の品質とコストの両立が困難になっている.このような問題に対し,特定の分野や方程式,計算機環境に特化した研究が主流だが,本研究では,より数理的な立場から,高い汎用性を維持して品質とコストが両立するような数値解法の開発に成功したものである.このような考え方は,数値解析や高性能計算分野で新しい研究スタイルの基盤となり,さらには既存解法を遥かに凌ぐ数値解法が次々と生成されることが期待される.
|
Report
(6 results)
Research Products
(48 results)