• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis on existence and uniqueness of weak solution for mean curvature flow including junction

Research Project

Project/Area Number 16K17622
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionKyoto University (2017-2019)
The University of Tokyo (2016)

Principal Investigator

TAKASAO Keisuke  京都大学, 理学研究科, 特定准教授 (50734472)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords平均曲率流 / 幾何学的測度論 / フェイズフィールド法 / 特異極限問題 / 変分問題 / バリフォールド / 弱解 / Allen-Cahn方程式 / 動的境界条件 / 極小曲面
Outline of Final Research Achievements

The mean curvature flow equation is an equation to describe the motion of metal grain boundaries in the annealing process. The existence of a time-global existence of the weak solution for the mean curvature flow equation is known, but when there are boundary condition or forcing term, it is difficult to prove the existence of the solution.
In this work, we showed that the solutions for Allen-Cahn equation with dynamic boundary condition converges to a time-global weak solution for the mean curvature flow equation with dynamic boundary condition, under suitable assumptions. We also proved the existence of time-global weak solutions for the mean curvature flow equation with forcing term belonging to the Sobolev class, using the Allen-Cahn equation with forcing term.

Academic Significance and Societal Importance of the Research Achievements

本研究では、境界条件や外力項を課した場合における、Allen-Cahn方程式と平均曲率流方程式との関係性を明らかにした。従来の外力項付きAllen-Cahn方程式では証明に必要な評価を得ることが出来なかったが、適切な補正項を加えることにより、それを解決した。この補正項を加える方法は他の方程式への応用も期待できる。
また、弱解の構成で用いたフェイズフィールド法は数値計算にも用いられる手法であり、本研究で得られた結果は実学への応用も期待できる。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (27 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (21 results) (of which Int'l Joint Research: 7 results,  Invited: 19 results)

  • [Int'l Joint Research] ドルトムント工科大学(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Existence of weak solution for mean curvature flow with transport term and forcing term2020

    • Author(s)
      Keisuke Takasao
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 19 Issue: 5 Pages: 2655-2677

    • DOI

      10.3934/cpaa.2020116

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Gradient estimates for mean curvature flow with Neumann boundary conditions2017

    • Author(s)
      M. Mizuno, K. Takasao
    • Journal Title

      Nonlinear Differential Equations and Applications

      Volume: 24 Issue: 4

    • DOI

      10.1007/s00030-017-0457-7

    • NAID

      120006459772

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Convergence of the Allen-Cahn equation with constraint to Brakke's mean curvature flow2017

    • Author(s)
      K. Takasao
    • Journal Title

      Advances in Differential Equations

      Volume: 22 Pages: 765-792

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of weak solution for volume preserving mean curvature flow via phase field method2017

    • Author(s)
      K. Takasao
    • Journal Title

      Indiana University Mathematics Journal

      Volume: 66 Pages: 2015-2035

    • NAID

      120006459769

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] New approximate method for the Allen--Cahn equation with double-obstacle constraint and stability criteria for numerical simulations2016

    • Author(s)
      T.Suzuki, K. Takasao and N. Yamazaki
    • Journal Title

      AIMS Mathematics

      Volume: 1 Issue: 3 Pages: 288-317

    • DOI

      10.3934/math.2016.3.288

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 結晶方位差を考慮した結晶粒界の発展方程式の解の存在について2019

    • Author(s)
      高棹圭介、水野将司
    • Organizer
      日本数学会2019年度秋季総合分科会(金沢大学)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Existence of weak solution for mean curvature flow with forcing term2019

    • Author(s)
      Keisuke Takasao
    • Organizer
      Kanazawa workshop: Gradient flows and related topics: analysis and applications(金沢市)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Phase field method for mean curvature flow with dynamic boundary condition2019

    • Author(s)
      高棹圭介
    • Organizer
      Viscosity solution approach to asymptotic problems in front propagation, dynamical system and related topics(京都大学)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 動的境界条件付き平均曲率流方程式に対するフェイズフィールド法2019

    • Author(s)
      高棹圭介
    • Organizer
      表面・界面ダイナミクスの数理17(東京大学)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Existence of weak solution for mean curvature flow with forcing term2019

    • Author(s)
      Keisuke Takasao
    • Organizer
      Oberseminar Analysis in Dortmund(TU Dortmund University)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 外力項付き平均曲率流の弱解の存在について2019

    • Author(s)
      高棹圭介
    • Organizer
      熊本大学応用解析セミナー(熊本大学)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 外力項付き平均曲率流方程式に対するフェイズフィールド法2019

    • Author(s)
      高棹圭介
    • Organizer
      東北大学応用数理解析セミナー(東北大学)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] New phase field method for mean curvature flow with transport term2019

    • Author(s)
      Keisuke Takasao
    • Organizer
      Stochastic and Multiscale Modeling and Computation Seminar (Illinois Institute of Technology)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] フェイズフィールド法による平均曲率流の弱解の存在について2019

    • Author(s)
      高棹圭介
    • Organizer
      談話会(京都大学)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Convergence of Landau-Lifshitz equation to multi-phase mean curvature flow2018

    • Author(s)
      高棹圭介
    • Organizer
      大阪大学 微分方程式セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Phase field method for mean curvature flow with dynamic boundary condition2018

    • Author(s)
      高棹圭介
    • Organizer
      研究集会「数学と現象:Mathematics and Phenomena in Miyazaki 2018」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Global existence of weak solution for volume preserving mean curvature flow via phase field method2018

    • Author(s)
      Keisuke Takasao
    • Organizer
      2018 CMS Winter Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Remarks on convergence of vector-valued Allen-Cahn equation to multi-phase mean curvature flow2018

    • Author(s)
      高棹圭介
    • Organizer
      松山解析セミナー 2018
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Rectifiability of varifolds in the singular limit of Allen-Cahn equation with non-local term2017

    • Author(s)
      高棹圭介
    • Organizer
      研究集会「第13回 非線型の諸問題」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 体積保存平均曲率流の弱解の存在と単調性公式について2017

    • Author(s)
      高棹圭介
    • Organizer
      日本数学会2017 年度年会
    • Place of Presentation
      首都大学東京(東京都, 八王子市)
    • Related Report
      2016 Research-status Report
  • [Presentation] Global existence of weak solution for volume preserving mean curvature flow via phase field method2017

    • Author(s)
      K. Takasao
    • Organizer
      Geometric Analysis Seminar
    • Place of Presentation
      マサチューセッツ工科大学(USA, Boston)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Global existence of weak solutions for volume preserving mean curvature flow2016

    • Author(s)
      K. Takasao
    • Organizer
      Workshop on Nonlinear Partial Differential Equations-China-Japan Joint Project for Young Mathematicians 2016
    • Place of Presentation
      華東師範大学(中国, 上海)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Global existence of weak solution for volume preserving mean curvature flow via phase field method2016

    • Author(s)
      高棹圭介
    • Organizer
      偏微分方程式セミナー
    • Place of Presentation
      北海道大学(北海道, 札幌市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 体積保存平均曲率流の弱解の存在及び単調性公式について2016

    • Author(s)
      高棹圭介
    • Organizer
      部分多様体幾何とリー群作用2016
    • Place of Presentation
      東京理科大学(東京都, 新宿区)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Phase field method for mean curvature flow with transport term2016

    • Author(s)
      K. Takasao
    • Organizer
      Shokaku Mathematical Lecture Series by Professor Lawrence C. Evans + Nonlinear PDE satellite Workshop
    • Place of Presentation
      東北大学(宮城県, 仙台市)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Global existence and monotonicity formula for volume preserving mean curvature flow2016

    • Author(s)
      K. Takasao
    • Organizer
      RIMS研究集会 保存則と保存則をもつ偏微分方程式に対する解の正則性,特異性および長時間挙動の研究
    • Place of Presentation
      京都大学数理解析研究所(京都府, 京都市)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi