Development of the GW approximation program code for accurate prediction of the energy level alignment at organic-metal interfaces(Fostering Joint International Research)
Project/Area Number |
16KK0115
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Physical chemistry
|
Research Institution | University of the Ryukyus |
Principal Investigator |
|
Research Collaborator |
Arno Schindlmayr パーダーボルン大学, 理学部, 教授
|
Project Period (FY) |
2017 – 2018
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
|
Keywords | 表面・界面 / 有機半導体 / 電荷注入準位 / 第一原理計算 / GW近似 / 半導体表面 / 有機-金属界面 / 準粒子エネルギー / 界面電子準位接続 |
Outline of Final Research Achievements |
To contribute to elucidation on the fundamental electronic properties of organic semiconductors, promising candidates for future flexible electronic devices, I conducted a collaborating work on development of the highly accurate solid-state theoretical method (GW approximation). I applied a simple calculation scheme to predict charge injection level at an organic semiconductor surface, which demonstrated dominant effects of atomic- or molecule-scale surface structures on the charge injection levels.
For more highly accurate treatment of the electronic states at surfaces and interfaces, I implemented a novel theoretical method enabling to describe the long-ranged screened coulomb potential in non-periodic systems [S. Ismail-Beigi, Phys. Rev. B 73, 233103 (2006)]. The newly implemented program code worked reasonably well, and thus paved the way for more highly accurate theoretical treatment of the microscopic-scale charge injection at surfaces and interfaces of organic semiconductors.
|
Academic Significance and Societal Importance of the Research Achievements |
有機分子からなる半導体は、安価な製造工程や材料の柔軟性を特長とし、次世代フレキシブルエレクトロニクスの候補として注目されている。 しかしながら、市場の大勢を占めるシリコン材料の無機半導体に比べ、有機半導体では、物質中の電子の輸送のしくみなど、基本的な現象の統一的な理解がいまだ得られていない状況である。 本研究は、実物質の観察・測定では特定しにくい、原子・分子スケールでの電子のふるまいを理論的に予測・再現し、基礎的な電子物性の理解に資することを目的に進めた。特に本研究では、まだ検討例が少ない、有機半導体の表面の構造と電子物性の関係を明らかにするための計算法・プログラムの発展に成功した。
|
Report
(2 results)
Research Products
(8 results)