• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of algebraic groups, Hecke algebras and canpex refiecion groups

Research Project

Project/Area Number 17340003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

SHOJI Toshiaki  Nagoya University, Graduate School of Matenmatics, Professor (40120191)

Co-Investigator(Kenkyū-buntansha) KAWANAKA Noriaki  Osaka University, Graduate School of Information Science and Technology, Professor (10028219)
SHINODA Ken-ichi  Sophia University, Faculty of Science and Technology, Professor (20053712)
GYOJA Akihiko  Sophia University, Graduate School of Mathematics, Professor (50116026)
OKADA Soichi  Sophia University, Gradate School of Mathematics, Professor (20224016)
ARIKI Susumu  Kyoto University, Research lnstitute for Mathematics Science, Associate Professor (40212641)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥9,990,000 (Direct Cost: ¥9,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2007: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2006: ¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 2005: ¥3,200,000 (Direct Cost: ¥3,200,000)
Keywordsalgebraic groups / Hecke algebras / complex reflection groups / cyclotomic q-Scqur algebras / Fock space / cellular aloebras / finite reductive groups / finite symmetric space / Ariki-Koike algebra / cyclotomic q-Schur algerbra / 分解定数 / 積公式 / フォック空間 / 有限Chevalley群 / 表現論 / 既約指標 / 古典群 / gneralizd Green関数 / modified Arki-Koik algebraSchur- / Schur-Weyl duality / graded affine Hecke algebra / generalized Green関数 / Springer correspondence
Research Abstract

We have studied on the following three themes.
1. Determination of scalars involved in Lusztig's conjecture concerning irreducible characters of finite reductive groups_G (F_q), and the determination of unipotent elements with certain good properties related to the algorithm of computing irreducible characters. In particular concerning the second problem, in the case where G (F_q) = SL_n(F_q), Sp_{2n}(F_q), SO_{2n+1} (F_q), SO {2n} (F_q) we have determined a class of good unipotent elements. In the case of Classical groups, this results holds also for the case where the characteristic is equal to 2. By this result, an algorithm computing Green functions of classical groups of even characteristic was established, which had involved certain ambiguity before.
2. It is known that Green functions of finite reductive groups is a polynomial in q. We have proved a formula for the values of Green functions obtained by substituting a root of unity for q. This type of formula was known in the case … More where G(F_q) = GL_n(F_q) by a combinatorial method. In this study, we have proved it in the general case by making use of induction theorem for Springer representations due to Lusztig.
3. We have studied the modular representation theory of Ariki-Koike algebras which are Hecke algebras associated to the complex reflection groups G(r,1,n), and the cyclotomic q-Schur algebras related to the Ariki-Koike algebras. We have constructed various subalgebras of cyclotomic q-Schur algebras and their quotients, and proved a product formulas for certain type of decomposition numbers, by comparing the decomposition numbers of them.
On the other hand, thanks to Yvonne's conjecture, it is conjectured that the decomposition numbers of cyclotomic q-Schur algebras are obtained from the transition matrix between standard bases and canonical bases of higher level Fock space. Based on this conjecture", we have proved a product formula for the Fock space which conjecturally corresponds to the original product formula Less

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (22 results)

All 2008 2007 2006 2005 Other

All Journal Article (16 results) (of which Peer Reviewed: 5 results) Presentation (2 results) Book (3 results) Remarks (1 results)

  • [Journal Article] A variant of the induction theorem for Springer representations2007

    • Author(s)
      T. Shoji
    • Journal Title

      J. of Algebra 311

      Pages: 130-146

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] A vanant of the induction theorem for Springer representations2007

    • Author(s)
      T. Shoji
    • Journal Title

      J. of Algebra Vol.311

      Pages: 130-146

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] A variant of the induction Theoremfor Springer representotims2007

    • Author(s)
      T. Shoji
    • Journal Title

      J. of Algebra 311

      Pages: 130-146

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Greneralized Greenfunctions and unipatent chsses for finite reduetive groups, II2007

    • Author(s)
      T. Shoji
    • Journal Title

      Nagoya Math. J 188

      Pages: 133-170

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Lusztig's conjecture for finite special linear groups2006

    • Author(s)
      T. Shoji
    • Journal Title

      Representation Theory 10

      Pages: 164-222

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Generalized Green functions and unipotent classes for finite reductive groups, 12006

    • Author(s)
      T. Shoji
    • Journal Title

      Nagoya Math. Journal 184

      Pages: 155-198

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Lusztig's conjecture for finite special linear groups2006

    • Author(s)
      T. Shoji
    • Journal Title

      Representation Theory Vol.10

      Pages: 164-222

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Generalized Green functions and unipotent classes for finite reductive groups, I2006

    • Author(s)
      T. Shoji
    • Journal Title

      Nagoya Math. Journal Vol.184

      Pages: 155-198

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Schur-Weyl reciprocity between quantum groups and Hecke algebras of type G(p,p,n)2006

    • Author(s)
      J.Hu, T.Shoji
    • Journal Title

      J. of Algebra 298

      Pages: 215-237

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Lusztig's conjecture for finite special linear groups2006

    • Author(s)
      T.Shoji
    • Journal Title

      Representation Theory 10

      Pages: 164-222

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Generalized Green functions and unipotent classes for finite reductive groups, I2006

    • Author(s)
      T.Shoji
    • Journal Title

      Nagoya Math. Journal 184

      Pages: 155-198

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Proof of the modular branching rule for cyclotomic Hecke algebras2006

    • Author(s)
      S.Ariki
    • Journal Title

      J. of Algebra 306

      Pages: 290-300

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Cyclotomic Narazov-Wenzl algebras2006

    • Author(s)
      S.Ariki, A.Mathas, H.Rui
    • Journal Title

      Nagoya Math. Journal 182

      Pages: 47-134

    • Related Report
      2006 Annual Research Report
  • [Journal Article] An elliptic generalization of Schur's Phaffian identity2006

    • Author(s)
      S.Okada
    • Journal Title

      Adv. In Math. 204

      Pages: 530-538

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Modified Ariki-Koike algebras and cyclotomic q-Schur algebras2005

    • Author(s)
      N.Sawada, T.Shoji
    • Journal Title

      Math.Z. 249

      Pages: 829-867

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On Green functions associated to complex reflection groups2005

    • Author(s)
      T.Shoji
    • Journal Title

      Sugaku Expositions 18

      Pages: 123-141

    • Related Report
      2005 Annual Research Report
  • [Presentation] Green functions and unipotent classes for finite reductive groups2005

    • Author(s)
      T. Shoji
    • Organizer
      Conference on algebraic groups and finite groups
    • Place of Presentation
      Lausanne(Switzerland)
    • Year and Date
      2005-06-15
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Green functions and unipotent classes for finite reductive groups2005

    • Author(s)
      T. Shoji
    • Organizer
      Conference on algebraic groups and Finite groups
    • Place of Presentation
      Lausanne(Switzerland)
    • Year and Date
      2005-06-15
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Book] 有限群の表現(数学セミナー)2008

    • Author(s)
      庄司 俊明
    • Total Pages
      5
    • Publisher
      日本評論社
    • Related Report
      2007 Annual Research Report
  • [Book] Symmetric space associated to finite special linear groups 上智大学数学講究録No.462006

    • Author(s)
      庄司 俊明
    • Total Pages
      19
    • Publisher
      上智大学理工学部数学教室
    • Related Report
      2006 Annual Research Report
  • [Book] 表現論の光芒-Hecke環をめぐる7つの物語-数理科学2005

    • Author(s)
      庄司 俊明
    • Total Pages
      7
    • Publisher
      サイエンス社
    • Related Report
      2005 Annual Research Report
  • [Remarks] 「研究成果報告書概要(和文)」より

    • URL

      http://www.math.nagoya-u.ac.jp/~shoji/

    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi