• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on coverings of curves and toric varieties through Weierstrass points

Research Project

Project/Area Number 17540046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKanagawa Institute of Technology

Principal Investigator

KOMEDA Jiryo  Kanagawa Institute of Technology, Center for Basic Education and Integrated Learning, Prof., 基礎・教養教育センター, 教授 (90162065)

Co-Investigator(Kenkyū-buntansha) OHBUCHI Akira  Tokushima University, Integrated Arts and Sciences, Prof., 総合科学部, 教授 (10211111)
Project Period (FY) 2005 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2006: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
KeywordsWeierstrass point / Weierstrass semigroup / Double covering of a curve / Affine toric variety / Numerical semigroup / Non-singular plane curve / Non-singular curve of genus 9 / Rational ruled surface / 非特異平面代数曲線 / 種数10の数値半群 / アフィン・トーリック多様体 / 神奈川工科大学研究報告半群 / 4-半群 / 曲線の巡回被覆 / 種数9の曲線 / 2n-半群
Research Abstract

This research is devoted to the following:
(1)The description of the Weierstrass semigroup of a ramification point on a double covering of a curve and its existence.
(2)Study on affine toric varieties which contain a monomial curve associated with a numerical semigroup of low genus.
(3)The determination of the candidates of the Weierstrass semigroup of a point on a non-singular plane curve of low degree.
For (1) we constructed a double covering of a curve with a ramification point over any point and describe the Weierstrass semigroup of the ramification point. An m-semigroup means a numerical semigroup whose minimum positive integer is m. We showed that there is a Weierstrass 2n-semigroup which is not the Weierstrass semigroup of any ramification point on a double covering of a curve for any n>2. But we also proved that any 4-semigroup is the Weierstrass semigroup of some ramification point on a double covering of a curve. In this case, if the number of the ramification points is small, we got such a covering using blow-ups of some rational ruled surface.
For (2) we found an affine toric variety which contains a non-primitive 7-semigroup of genus 9 generated by 5 or 6 elements except two cases. Moreover, we also found an affine toric variety which contains a non-primitive 6-semigroup of genus 9 except the semigroups which are the Weierstrass semigroups of ramification points on double coverings. By virtue of the results there are only two numerical semigroups of genus 9 which are not decided whether it is Weierstrass or not.
For (3) we gave the complete description of the candidates for the Weierstrass semigroup of a point on a non-singular plane curve of degree 7.

Report

(3 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • Research Products

    (23 results)

All 2007 2006 2005 Other

All Journal Article (23 results)

  • [Journal Article] Weierstrass points on a non-singular plane curve of degree 72007

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      神奈川工科大学研究報告 B(理工学編) 31

      Pages: 29-34

    • NAID

      110006424289

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrass semigroup2007

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Tsukuba Journal of Mathematics 31(To appear in)

    • NAID

      120005367991

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Weierstrass points on a non-singular plane curve of degree 72007

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-31

      Pages: 29-34

    • NAID

      110006424289

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrass semigroup2007

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      To appear in Tsukuba Journal of Mathematics 31

    • NAID

      120005367991

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Weierstrasse points on a non-singular plane curve of degree 72007

    • Author(s)
      Seon Jeong Kim, Jiryo Komeda
    • Journal Title

      神奈川工科大学研究報告 B理工学編 31

      Pages: 29-34

    • NAID

      110006424289

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrasse semigroup2007

    • Author(s)
      Jiryo Komeda, Ohbuchi Akira
    • Journal Title

      Tsukuba Journal of Mathematics 31(To appear)

    • NAID

      120005367991

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On 7-semigroups of genus 9 generated by 5 elements2006

    • Author(s)
      J.Komeda
    • Journal Title

      神奈川工科大学研究報告 B(理工学編) 30

      Pages: 91-100

    • NAID

      110006175660

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On numerical semigroups of genus 92006

    • Author(s)
      J.Komeda
    • Journal Title

      数理解析研究所講究録 1503

      Pages: 70-75

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve2006

    • Author(s)
      M.Homma, S.J.Kim, J.Komeda
    • Journal Title

      Journal of Algebra 305

      Pages: 1-17

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] Corrigendum for Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve2006

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 32

      Pages: 375-378

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On 7-semigroups of genus 9 generated by 5 elements2006

    • Author(s)
      J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-30

      Pages: 91-100

    • NAID

      110006175660

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On numerical semigroups of genus 92006

    • Author(s)
      J.Komeda
    • Journal Title

      RIMS Kokyuroku 1503

      Pages: 70-75

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On numerical semigroups of genus 92006

    • Author(s)
      Jiryo Komeda
    • Journal Title

      京都大学数理解析研究所講究録 1503

      Pages: 70-75

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Corrigendum for Weierstrasse points with first non-gap four on a double covering of a hyperelliptic curve2006

    • Author(s)
      Jiryo Komeda, Akira Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 32

      Pages: 375-378

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On 7-semigroups of genus 9 generated by 5 elements2006

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-30

      Pages: 91-100

    • NAID

      110006175660

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On Weierstrass 7-semigroups2005

    • Author(s)
      J.Komeda
    • Journal Title

      数理解析研究所講究録 1437

      Pages: 136-144

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On Weierstrass 7-semigroups2005

    • Author(s)
      J.Komeda
    • Journal Title

      RIMS Kokyuroku 1437

      Pages: 136-144

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve2005

    • Author(s)
      Seon Jeong Kim, Jiryo Komeda
    • Journal Title

      Bulletin of the Brazilian Mathematical Society 36

      Pages: 127-142

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On Weierstrass 7-semigroups2005

    • Author(s)
      Jiryo Komeda
    • Journal Title

      数理解析研究所講究録 1437

      Pages: 136-144

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Weierstrass semigroups whose minimum positive integers are even

    • Author(s)
      J.Komeda
    • Journal Title

      Archiv der Mathematik (To appear in)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Weierstrass semigroups whose minimum positive integers are even

    • Author(s)
      J.Komeda
    • Journal Title

      To appear in Archiv der Mathematik

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Weierstrasse semigroups whose minimum positive integers are even

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Archiv der Mathematik To appear

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrass semigroup

    • Author(s)
      Jiryo Komeda, Akira Ohbuchi
    • Journal Title

      Tsukuba Journal of Mathematics (To appear)

    • NAID

      120005367991

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi