• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A quasi-triangular structure in Kashiwara-Miwa model

Research Project

Project/Area Number 17540204
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionRikkyo University

Principal Investigator

YAMADA Yuji  Rikkyo University, Dep. of math., lecturer (40287917)

Co-Investigator(Kenkyū-buntansha) SHIRAISHI Junichi  Univ. of Tokyo, Graduate school of math., Sciences associate professor (20272536)
KAKEI Saboro  Rikkyo Univ., Dep. of math., associate professor (60318798)
佐藤 文広  立教大学, 理学部, 教授 (20120884)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,730,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥330,000)
Fiscal Year 2007: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsYang-Baxter equation / reflection equation / quasi-triangular Hopf algebra / Yang-Bxter方程式 / quantum group / R-行列 / Yang-Baxter方程式 / YBE / 反射方程式
Research Abstract

We study the classification of the solutions to the reflection equation for Cremmer-Gervais R-matrix in N=3 case. The R-matrix of Cremmer-Gervais type is obtained from Uq(sl_N) through the theory of quasi-triangular Hopf algebras of Drinfeld as solutions to the Yang-Baxter equation. There are only two types of the R-matrices which are obatained through the theory of quasi-triangular Hopf algebras. One is the series of Belavin' s R-matrices, and the other is the series of Cremmer-Gervais type. The algebraic structures of the solutions to the reflection equations are not well understood. We have only two cases in which all solutions to the reflection equation are known, (1) N=2 Belavin' s elliptic R-matrix (eight-vertex case), and (2) N=3 trigonomerically degenerated Belavin' s R-matix case. In order to understand the algebraic structure in solutions to the reflection equation, we study the case of N=3 Cremmer-Gervais R-matix case (with Kohei MOTEGI). The N=2 Cremmer-Gervais R-matrix is only the degenerated N=2 Belavin' s elliptic R-matrix.
The solution space of the reflection equation to the N=3 Cremmer-Gervais R-matrix obtained through this study is described by the rational surface in projective spaces. In the case of the N=3 trigonometric R-matrix, the parameter space of the solution of the reflection equation is the Segre three-fols in $P^5(C)$. In our case there appeared two parameters spaces. One is the same Segre three-fold. But the other new parameter space is embedded in the projective space$P^10$.

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (12 results)

All 2008 2007 2006 2005

All Journal Article (10 results) (of which Peer Reviewed: 4 results) Presentation (2 results)

  • [Journal Article] The sixth Painleve equation as similarity reduction of gl_3 hierarchy2007

    • Author(s)
      KAKEI, Saburo, KIKUCHI, Tetsuya
    • Journal Title

      Letters in Mathematical Physics 79(3)

      Pages: 221-234

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] KIKUCHI, Tetsuya, The sixth Painleve equationas similarity reduction of gl_3 hierarchy2007

    • Author(s)
      KAKEI, Saburo
    • Journal Title

      Letters in Mathematical Physics 79(3)

      Pages: 221-234

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] The sixth Painleve equation as similarity reduction of gl_3 hierarchy2007

    • Author(s)
      KAKEI, Saburo; KIKUCHI, Tetsuya
    • Journal Title

      Letters in Mathematical Physics 79(3)

      Pages: 221-234

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sugawara and vertex operator constructions for deformed Virasoro algebras.2006

    • Author(s)
      Arnaudon, Daniel, Avan, Jean, Frappat, Luc, Ragoucy, Eric, Shiraishi, Junichi
    • Journal Title

      Ann. Henri Poincare 7

      Pages: 1327-1349

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] A family of integral transformations and basic hypergeometric series2006

    • Author(s)
      Shiraishi, Jun'ichi
    • Journal Title

      Comm. Math. Phys. 263, no. 2

      Pages: 439-460

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Sugawara and vertex operator constructions for deformed Virasoro algebras2006

    • Author(s)
      Arnaudon, Daniel, Avan, Jean, Frappat, Luc, Ragoucy, Eric, Shiraishi, Junichi
    • Journal Title

      Ann. Henri Poincare vol 7

      Pages: 1327-1349

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Sugawara and vertex operator constructions for deformed Virasoro algebras.2006

    • Author(s)
      Jun'ichi Shiraishi et al.
    • Journal Title

      Annales Henri Poincare 7

      Pages: 1327-1349

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Toroidal Lie algebra and Bilinear Identity of the Self-Dual Yang-mills Hierarchy2006

    • Author(s)
      Saburo Kakei
    • Journal Title

      NATO Science Series II : Mathematics, Physics and Chemistry. 201

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A Conjecture about Raising Operators for Macdonald Polynomials2005

    • Author(s)
      Jun'ichi Shiraishi
    • Journal Title

      Letters in Mathematical Physics Volume 73, Number 1

      Pages: 71-81

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Solutions of a derivative nonlinear Schrodinger hierarchy and its similarity reduction2005

    • Author(s)
      Saburo Kakei, Tetsuya Kikuchi
    • Journal Title

      Glasgow Mathematical Journal Volume 47, Issue A

      Pages: 99-107

    • Related Report
      2005 Annual Research Report
  • [Presentation] NLS-ASDYM階層とパンルヴェ方程式2008

    • Author(s)
      筧 三郎, 菊地 哲也
    • Organizer
      日本数学会
    • Place of Presentation
      近畿大学
    • Year and Date
      2008-03-23
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] The hierarchy of NLS-ASDYM and the painleve equations2008

    • Author(s)
      KAKEI, Saburo, KIKUCHI, Tetsuya
    • Organizer
      Nihon suugaku kai
    • Place of Presentation
      Kinki Univ
    • Year and Date
      2008-03-03
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2021-08-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi