• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of concentration phenomena for nonlinear wave and dispersive equations

Research Project

Project/Area Number 17H02853
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Mathematical analysis
Research InstitutionKyoto University

Principal Investigator

Tsutsumi Yoshio  京都大学, 国際高等教育院, 特定教授 (10180027)

Co-Investigator(Kenkyū-buntansha) 前田 昌也  千葉大学, 大学院理学研究院, 准教授 (40615001)
前川 泰則  京都大学, 理学研究科, 教授 (70507954)
阿部 健  大阪公立大学, 大学院理学研究科, 准教授 (80748327)
岸本 展  京都大学, 数理解析研究所, 講師 (90610072)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2017: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Keywords非線形波動・分散型方程式 / 初期値問題の適切性 / 初期値問題の非適切性 / 非線形シュレディンガー方程式 / フーリエ制限法 / 関数方程式論 / 関数解析 / フーリエ解析 / 運動論的微分シュレディンガー方程式 / 実関数論 / 関数解析学 / 数理物理学 / 無限次元ハミルトン系 / ガウス測度の準不変性 / 3次分散項付き非線形シュレディンガー方程式 / リウビル方程式 / KP II方程式 / 異方的ソボレフ空間 / 大域アトラクター / 減衰項と外力付きKP-II方程式 / 3階分散項付き非線形シュレディンガー方程式 / Raman散乱 / Gevreyクラス / ノルム・インフレーション / Sobolev空間 / 抽象Cauchy-Kowlevsky定理 / 減衰項と外力付きZakharov-Kuznetsov方程式 / グローバル・アトラクター / 数理物理 / 3次分散項 / 高階非線形シュレディンガー方程式 / 共鳴周波数 / 初期値問題 / 負の指数のソボレフ空間 / 解の非一意性 / 非共鳴条件
Outline of Final Research Achievements

The well-posedness of the initial value problem is the most fundamental problem in the field of nonlinear evolution equations. The well-posedness is a concept consisting of three properties: existence of solution, uniqueness and continuous dependence of solutions on initial data. It heavily depends on the sturacture of each nonlinear evolution equation when its initial value problem is well-posed, which is very attractive. The study of the structure for each important equation has a great significance, since it is extremely difficult to construct the general theory applicable to various nonlinear evolution equations. In this research, we study the well-posedness of the initial value problem for the nonlinear Schroedinger equation with Ramman scattering term and the kinetic derivative nonlinear Schroedinger equation. We have showed that the well-posedness depends on the regularity of function spaces to which solutions belong.

Academic Significance and Societal Importance of the Research Achievements

偏微分方程式に対しては,解が存在することは自明ではなく,実際解を持たない偏微分方程式も存在する.解の存在を数学的に示すためには,解が存在している関数空間を適切に設定することが重要となる.そのような関数空間を見つけることができれば,その関数空間の元であることから,解の様々な性質を導き出すこともできる.従って,初期値問題が適切となるか否かも,関数空間をいかに設定するかが決定的役割を果たす.近年では,物理学や工学においてコンピュータによる数値シミュレーションが盛んに行われている.数値シミュレーションを実行する際も,解がどのような関数空間に属するか分かれば,それに応じた計算スキームの採用が可能となる.

Report

(6 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (25 results)

All 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (8 results) Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 9 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Sorbonne University(フランス)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] 高等師範学校レンヌ校(フランス)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] 北京大学(中国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Ecole Normale Superieure de Rennes(フランス)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] 北京大学(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] エジンバラ大学(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] セルジーポントワーズ大学(フランス)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] 北京大学(中国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Low regularity a priori estimate for KDNLS via the short-time Fourier restriction method2023

    • Author(s)
      Kishimoto, Nobu; Tsutsumi, Yoshio
    • Journal Title

      Advances in Continuous and Discrete Models: Theory and Modern Applications

      Volume: - Issue: 1 Pages: 29-29

    • DOI

      10.1186/s13662-023-03756-6

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Well-posedness of the Cauchy problem for the kinetic DNLS on \mathbf{T}2023

    • Author(s)
      N. Kishimoto and Y. Tsutsumi
    • Journal Title

      J. Hyperbolic Diff. Eqns.

      Volume: 20 Issue: 01 Pages: 1-49

    • DOI

      10.1142/s0219891623500029

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quasi-invariance of Gaussian measures transported by the cubic NLS with third-order dispersion on $\mathbf{T}$2021

    • Author(s)
      Arnaud Debussche and Yoshio Tsutsumi
    • Journal Title

      Journal of Functional Analysis

      Volume: 281

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space2020

    • Author(s)
      Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 40 Issue: 3 Pages: 1283-1307

    • DOI

      10.3934/dcds.2020078

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Localization estimate and global attractor for the damped and forced Zakharov-Kuznetsov equation in R22019

    • Author(s)
      Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi
    • Journal Title

      Dynamics of Partial Differential Equations

      Volume: 16 Issue: 4 Pages: 317-323

    • DOI

      10.4310/dpde.2019.v16.n4.a1

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ill-posedness of the third order NLS equation with Raman scattering term2018

    • Author(s)
      N. Kishimoto and Y. Tsutsumi
    • Journal Title

      Math. Res. Lett.

      Volume: 25 Issue: 5 Pages: 1447-1484

    • DOI

      10.4310/mrl.2018.v25.n5.a5

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Local well-posedness of the NLS equation with third order dispersion in negative Sobolev spaces2018

    • Author(s)
      T. Miyaji and Y. Tsutsumi
    • Journal Title

      Differential and Integral Equations

      Volume: 31 Pages: 111-132

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] Remark on the sharp cut-off estimate and the Lions-Magenes-Strichartz space2022

    • Author(s)
      堤誉志雄
    • Organizer
      東北大学理学研究科数学専攻談話会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 非線形分散型方程式と関数空間2021

    • Author(s)
      堤誉志雄
    • Organizer
      2021年度日本数学会秋季総合分科会 企画特別講演
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Local well-posedness of the Cauchy problem for the kinetic DNLS on T2020

    • Author(s)
      Yoshio Tsutsumi
    • Organizer
      Harmonic Analysis and Dispersive PDEs: Problems and Progress
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Ill-posedness of the third order NLS with Raman scattering term2019

    • Author(s)
      Yoshio Tsutsumi
    • Organizer
      Advances in Nonlinear Dispersive Equations: Challenges and Perspectives
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Ill-posedness of the third order NLS with Raman scattering2019

    • Author(s)
      Y. Tsutsumi
    • Organizer
      第36回九州における偏微分方程式研究集会
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Ill-posedness of the third order NLS equation with Raman scattering term2019

    • Author(s)
      Y. Tsutsumi
    • Organizer
      国立成功大学数学系コロキウム(台湾)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Quasi-invariance Gaussian measures for NLS with third order dispersion2019

    • Author(s)
      Y. Tsutsumi
    • Organizer
      国立成功大学数学系コロキウム
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Localization estimate of solution for the 2D damped and forced Zakharov-Kuznetsov equation2018

    • Author(s)
      Yoshio Tsutsumi
    • Organizer
      The JAMI 2018 Second Workshop at Johns Hopkins University
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Well-posedness and smoothing effect for nonlinear dispersive equations2017

    • Author(s)
      堤 誉志雄
    • Organizer
      2017年度日本数学会秋季総合分科会 総合講演
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Funded Workshop] Nonlinear Wave and Dispersive Equations2017

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi