• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global dynamics of nonlinear wave equations

Research Project

Project/Area Number 17H02854
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Mathematical analysis
Research InstitutionKyoto University (2018-2022)
Osaka University (2017)

Principal Investigator

Nakanishi Kenji  京都大学, 数理解析研究所, 教授 (40322200)

Co-Investigator(Kenkyū-buntansha) 水谷 治哉  大阪大学, 大学院理学研究科, 准教授 (10614985)
眞崎 聡  大阪大学, 大学院基礎工学研究科, 准教授 (20580492)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥12,090,000 (Direct Cost: ¥9,300,000、Indirect Cost: ¥2,790,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords非線形波動 / 散乱理論 / ソリトン / 爆発解 / 解の爆発 / 波動乱流
Outline of Final Research Achievements

For solutions of several equations describing nonlinear waves, we gave characterizations on various time-global behavior generated by strong competitions between wave dispersion and nonlinear interactions, and also classifications on solutions by initial data, which corresponds to predictions for the phenomena. Moreover, we developed methods for those mathematical analysis. Specifically, we extended the case where nonlinear interaction remains forever on dispersive waves such that the equation and/or the solution itself may include solitons etc. We also developed a method for the classification, deriving and using uniform and global space-time estimates for the linear equation where one of the interacting waves is regarded as a potential. For a dissipative equation, we gave a complete classification of global behavior for solutions near two solitons.

Academic Significance and Societal Importance of the Research Achievements

非線形波動を記述する偏微分方程式は様々な物理現象に対して用いられているが、その純粋数学的な解析が大きく成功しているケースは物理的設定からかけ離れている事が多く、それらの方程式の特徴である多様な変化が生じるためには、非線形相互作用が分散性に対して弱過ぎる傾向にある。本課題の研究成果は、より物理的に自然な状況で、更に複雑な解を数学的に捉えるため、この分野の更なる発展に寄与すると期待される。特に非線形相互作用が分散性よりも台頭してくる状況で、より一般的な状況を扱うための理論設定や、複雑な漸近挙動の定式化、及び解析手法の枠組を与えたことは重要な進歩と考えられる。

Report

(6 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (36 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (13 results) Journal Article (21 results) (of which Int'l Joint Research: 11 results,  Peer Reviewed: 21 results,  Open Access: 7 results) Presentation (2 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Int'l Joint Research] Missouri University of Science and Tech.(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Victoria/University of British Colombia(カナダ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] National Cheng Kung University(台湾)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Courant Institute(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Victoria(カナダ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Universita degli Studi di Milano(イタリア)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Victoria(カナダ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Monash University(オーストラリア)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Bielefeld University(ドイツ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] National Cheng Kung University(台湾)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Monash University(Australia)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] National Cheng Kung University(Taiwan)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Bielefeld University(Germany)

    • Related Report
      2017 Annual Research Report
  • [Journal Article] Scattering and asymptotic order for the wave equations with the scale-invariant damping and mass2021

    • Author(s)
      Inui Takahisa、Mizutani Haruya
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 28 Issue: 1 Pages: 8-8

    • DOI

      10.1007/s00030-020-00671-7

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A sharp scattering threshold level for mass-subcritical nonlinear Schrodinger system2021

    • Author(s)
      Hamano Masaru、Masaki Satoshi
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 41 Issue: 3 Pages: 1415-1447

    • DOI

      10.3934/dcds.2020323

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Global wellposedness for the energy-critical Zakharov system below the ground state2021

    • Author(s)
      Candy Timothy、Herr Sebastian、Nakanishi Kenji
    • Journal Title

      Advances in Mathematics

      Volume: 384 Pages: 107746-107746

    • DOI

      10.1016/j.aim.2021.107746

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The Zakharov system in 4D radial energy space below the ground state2021

    • Author(s)
      Guo Zihua、Nakanishi Kenji
    • Journal Title

      American Journal of Mathematics

      Volume: 143 Issue: 5 Pages: 1527-1600

    • DOI

      10.1353/ajm.2021.0039

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Failure of scattering to solitary waves for long-range nonlinear Schrodinger equations2021

    • Author(s)
      Murphy Jason、Nakanishi Kenji
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 41 Issue: 3 Pages: 1507-1517

    • DOI

      10.3934/dcds.2020328

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Strichartz estimates for Schrodinger equations with slowly decaying potentials2020

    • Author(s)
      Mizutani Haruya
    • Journal Title

      Journal of Functional Analysis

      Volume: 279 Issue: 12 Pages: 108789-108789

    • DOI

      10.1016/j.jfa.2020.108789

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions2020

    • Author(s)
      Masaki Satoshi、Segata Jun-ichi、Uriya Kota
    • Journal Title

      Journal de Mathe'matiques Pures et Applique'es

      Volume: 139 Pages: 177-203

    • DOI

      10.1016/j.matpur.2020.03.009

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential2020

    • Author(s)
      Satoshi Masaki, Jason Murphy and Jun-ichi Segata
    • Journal Title

      Analysis & PDE

      Volume: 13 Issue: 4 Pages: 1099-1128

    • DOI

      10.2140/apde.2020.13.1099

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Non-uniqueness for an energy-critical heat equation on R22020

    • Author(s)
      Ibrahim Slim、Kikuchi Hiroaki、Nakanishi Kenji、Wei Juncheng
    • Journal Title

      Mathematische Annalen

      Volume: 380 Issue: 1-2 Pages: 317-348

    • DOI

      10.1007/s00208-020-01961-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A survey on long range scattering for Schrodinger equation and Klein-Gordon equation with critical nonlinearity of non-polynomial type2020

    • Author(s)
      Satoshi Masaki
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B82 Pages: 103-135

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type, Differential and Integral Equations2020

    • Author(s)
      Satoshi Masaki and Koki Sugiyama
    • Journal Title

      Differential Integral Equations

      Volume: 33 Pages: 247-256

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Failure of scattering to standing waves for a Schr?dinger equation with long-range nonlinearity on star graph2020

    • Author(s)
      Aoki Kazuki、Inui Takahisa、Mizutani Haruya
    • Journal Title

      Journal of Evolution Equations

      Volume: 21 Issue: 1 Pages: 297-312

    • DOI

      10.1007/s00028-020-00579-w

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities2020

    • Author(s)
      Ibrahim S.、Masmoudi N.、Nakanishi K.、Sani F.
    • Journal Title

      Journal of Functional Analysis

      Volume: 278 Issue: 1 Pages: 108302-108302

    • DOI

      10.1016/j.jfa.2019.108302

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Randomized final-data problem for systems of nonlinear Schrodinger equations and the Gross-Pitaevskii equation2019

    • Author(s)
      Nakanishi Kenji、Yamamoto Takuto
    • Journal Title

      Mathematical Research Letters

      Volume: 26 Issue: 1 Pages: 253-279

    • DOI

      10.4310/mrl.2019.v26.n1.a12

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Global well-posedness and scattering for the quantum Zakharov system in $L^2$2019

    • Author(s)
      Fang Yung-Fu、Nakanishi Kenji
    • Journal Title

      Proceedings of the American Mathematical Society, Series B

      Volume: 6 Issue: 3 Pages: 21-32

    • DOI

      10.1090/bproc/42

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The radial mass-subcritical NLS in negative order Sobolev spaces2019

    • Author(s)
      Killip Rowan、Masaki Satoshi、Murphy Jason、Visan Monica
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 39 Issue: 1 Pages: 553-583

    • DOI

      10.3934/dcds.2019023

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Nonexistence of scattering and modified scattering states for some nonlinear Schrodinger equation with critical homogeneous nonlinearity2019

    • Author(s)
      S. Masaki, and S. Miyazaki
    • Journal Title

      Differential Integral Equations

      Volume: 32 Pages: 121-138

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the boundary Strichartz estimates for wave and Schrodinger equations2018

    • Author(s)
      Zihua Guo, Ji Li, Kenji Nakanishi and Lixin Yan
    • Journal Title

      Journal of Differential Equations

      Volume: 265 Issue: 11 Pages: 5656-5675

    • DOI

      10.1016/j.jde.2018.07.010

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Modified Scattering for the One-Dimensional Cubic NLS with a Repulsive Delta Potential2018

    • Author(s)
      Masaki Satoshi、Murphy Jason、Segata Jun-Ichi
    • Journal Title

      International Mathematics Research Notices

      Volume: - Issue: 24 Pages: 1-27

    • DOI

      10.1093/imrn/rny011

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global-in-time smoothing effects for Schrodinger equations with inverse-square potentials2018

    • Author(s)
      Haruya Mizutani
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 146 Issue: 1 Pages: 295-307

    • DOI

      10.1090/proc/13729

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Scattering for the 3D Gross-Pitaevskii Equation2018

    • Author(s)
      Zihua Guo, Zaher Hani, Kenji Nakanishi
    • Journal Title

      Communications in Mathematical Physics

      Volume: 359 Issue: 1 Pages: 265-296

    • DOI

      10.1007/s00220-017-3050-3

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Global wellposedness for the Zakharov system in 4D below t he ground state2021

    • Author(s)
      Kenji Nakanishi
    • Organizer
      International Workshop on Recent Advances in Nonlinear Partial Differential Equations
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Global dynamics around two‐solitons for the damped nonlin ear Klein‐Gordon equation2021

    • Author(s)
      Kenji Nakanishi
    • Organizer
      Long Time Behavior and Singularity Formation in PDEs; Part III
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi