Development of Novelly Durable Electrochemical-Capacitors Using Dimensional-Stable Seamless-Carbon Electrodes
Project/Area Number |
17H03123
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic industrial materials
|
Research Institution | Gunma University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥13,390,000 (Direct Cost: ¥10,300,000、Indirect Cost: ¥3,090,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥10,790,000 (Direct Cost: ¥8,300,000、Indirect Cost: ¥2,490,000)
|
Keywords | キャパシタ / 活性炭電極 / シームレス / 耐久性 / 低消費電力・高エネルギー密度 / 無機工業化学 / 省エネルギー / ナノ材料 |
Outline of Final Research Achievements |
The development of the nanoporous carbon electrode with wide electrochemical window is vey significant for improving the energy-density and durability against high-voltage charge of electrochemical capacitors. This research project focuses on a new activated-carbon electrode with particle-boundary free structure (seamless activated-carbon). The micropore-blockage and increase in internal resistance of the electrode when applying high voltage to the EDLC were investigated to clarify the capacitance-decline mechanism and to optimize the micropore structure, crystallinity, surface functionalities, and 3D structure of the electrode. As a result, it has been revealed that nitrogen doping or metal-oxide coating as surface modification is promising. Therefore, it can be said that basic knowledge to develop " super-dimensional carbon electrode" for the EDLC available to high voltage operation was acquired in this project.
|
Academic Significance and Societal Importance of the Research Achievements |
電気化学キャパシタの一つである電気二重層キャパシタは1970年代から実用化されている大容量コンデンサであるが、再生可能エネルギーの貯蔵ならびに自動車用電源にも応用できるため近年非常に注目されている。電気二重層キャパシタが今後さらに普及するためには容量の増大だけでなく耐電圧(高い電圧での充電に対する耐久性)を改善して信頼性を高める必要がある。本研究では、粒子界面が存在しないシームレス構造を有する新規な活性炭電極(シームレス活性炭)の表面の化学状態を制御した結果、優れた耐電圧を有するEDLCを実現するための足がかりを得ることができた。
|
Report
(4 results)
Research Products
(47 results)