Project/Area Number |
17H03305
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geotechnical engineering
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Kenichi Maeda 名古屋工業大学, 工学(系)研究科(研究院), 教授 (50271648)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2019: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2017: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
|
Keywords | 河川堤防 / パイピング / マルチスケール / マイクロメカニクス / 噴砂 / 漏水 / 局所化 / 液状化 / 複層構造 / 限界流速 / 透水係数 / 水防 / 浸透破壊 / 動水勾配 / 豪雨・洪水 / 浸透 / 高水位継続時間 |
Outline of Final Research Achievements |
Sand boiling dynamics, looseness and liquefaction of soils due piping growth and pore water pressure distributions in the combinations of the properties of river levee body and base ground, and river water level were discussed by performing site investigation and three-dimensional seepage analysis. The key parameters for occurrence and consequence conditions of piping were revealed: layer structures properties in permeable base layer, existence and location in dead-end and the unevenness of inside-land. ased on mechanical mechanism of sand boiling holes in which sand particles were erupted due to the localization of pore water flow, the efficiency conditions on traditional methods in leakage control works also were proposed.Moreover, based on the survey results for levees damaged and mechanical mechanism of sand boiling holes in which sand particles were erupted due to the localization of pore water flow, an inspection flow of piping risk in river levees was proposed.
|
Academic Significance and Societal Importance of the Research Achievements |
パイピング現象は、土質力学の伝統的問題で局所動水勾配を基に発生条件が算定され、その発達は水みちが短くなることが原因として定性的に説明されてきたが、その発達のダイナミクスは未解明であった。本研究によって、土粒子から構造物レベルまでのマルチスケールの相互作用に着目することで噴砂動態・変状の発生・発達・破堤までの過程に統一的解釈の一端を与た。固体・液体の両面性が現れる現象は理学・工学の様々な研究分野で難題とされている中で、本成果は高い学際的波及効果が見込まれる。さらに、外力履歴と堤防特性を一体で堤防の応答を理解できたことは、洪水対策技術の革新と効率的な維持管理に繋がり、社会的・経済的貢献度が高い。
|