Development of atomic-scale characterization for low-dimensional materials
Project/Area Number |
17H04797
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Nanostructural physics
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Senga Ryosuke 国立研究開発法人産業技術総合研究所, 材料・化学領域, 主任研究員 (80713221)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥25,480,000 (Direct Cost: ¥19,600,000、Indirect Cost: ¥5,880,000)
Fiscal Year 2020: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥13,390,000 (Direct Cost: ¥10,300,000、Indirect Cost: ¥3,090,000)
|
Keywords | ナノ材料 / 透過電子顕微鏡 / 電子エネルギー損失分光 / カーボンナノチューブ / グラフェン / 励起子 / フォノン / 低次元材料 / 光学特性 / 振動特性 / 電子線分光 / 物性評価 / 電子顕微鏡 / ナノ光物性 / 分散関係 / 光物性 / 原子層物質 |
Outline of Final Research Achievements |
The optical absorption of a single carbon nanotube has been successfully measured by high-energy-resolution electron energy-loss spectroscopy. We have also established an analytical method to quantitatively link the electron valence excitation spectrum with the optical absorption spectrum. Then we have quantitatively clarified the modulation of optical conductivity at a local defect in a single carbon nanotube. Furthermore, we have developed a technique to investigate vibrational properties using angle-resolved electron energy loss spectroscopy and demonstrated for the first time to measure the phonon dispersion of a single layer graphene. These results were published in eight international journals including Nature, Nanoletters and Physical Review Letters, as well as in seven domestic and international invited talks.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によって低次元材料の物性を決める励起子やフォノンといった準粒子の振る舞いを原子構造と一対一で結び付けることができた。これらの成果は基礎学術的な理解を深めるだけでなく、低次元材料の応用展開を考えるうえでも重要な知見である。例えば微小光源、単一光子エミッタ、高感度光センサーといったデバイスに関して、許容できる欠陥の種類や個数などの指針を与え最適な構造設計に貢献できる。またこれまで理論計算が先行していたナノ材料の格子振動の計測に成功したことも、材料科学分野に大きなインパクトを与える成果であり、熱電素子や光電子デバイス、超電導体などの今後の研究開発への貢献が期待できる。
|
Report
(5 results)
Research Products
(35 results)